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Sarcomeres are the basic force generating units of striated muscles and consist of an interdigitating
arrangement of actin and myosin filaments. While muscle contraction is usually triggered by neural
signals, which eventually set myosin motors into motion, isolated sarcomeres can oscillate sponta-
neously between a contracted and a relaxed state. We analyze a model for sarcomere dynamics,
which is based on a force-dependent detachment rate of myosin from actin. Our numerical bifur-
cation analysis of the spontaneous sarcomere dynamics reveals notably Hopf bifurcations, canard
explosions, and gluing bifurcations. We discuss possible implications for experiments.
© 2010 American Institute of Physics. �doi:10.1063/1.3523283�

In skeletal muscles, the elementary force producing units
are sarcomeres. They consist of interdigitating filaments
of molecular motors and actin filaments. Upon activation
by a neural signal, the motors move along the actin fila-
ments and thus shorten the sarcomere. Elastic elements
maintain the regular arrangement of motor and actin
filaments. It has been found experimentally that in the
absence of neural signals, sarcomeres can spontaneously
oscillate in length. We study a possible mechanism of
spontaneous sarcomere oscillations, which is based on a
dynamic instability of motors coupled to an elastic ele-
ment. We find a large variety of nonlinear behavior rang-
ing from simple oscillations to excitable and chaotic dy-
namics. Our results indicate possible ways to
experimentally test the mechanism we propose for spon-
taneous sarcomere oscillations.

I. INTRODUCTION

Striated muscles consist of fibers, called myofibrils,
which are formed by a periodic arrangement of interdigitat-
ing myosin filaments and actin filaments. Myosin is a motor
protein, which can convert the chemical energy released dur-
ing the hydrolysis of adenosine-tri-phosphate �ATP� into me-
chanical work when it interacts with actin filaments. Impor-
tantly, these filaments have two structurally distinct ends and
in this way determine the direction of the force generated by
myosin motors. A unit cell of the periodic myofibril structure
is called a sarcomere and presents the basic contractile unit
of striated muscles, see Fig. 1�a�. In a sarcomere, the inter-
action of the myosin motors with the polar actin filaments
leads to unidirectional sliding between the two kinds of fila-
ments and induces sarcomere and hence muscle contraction.
The structural integrity of sarcomeres is assured by elastic
elements, notably Z-disks, M-lines, and titin molecules.

In an organism, striated muscles usually contract as a
result of an increased concentration of Ca2+ ions subsequent

to a neural signal. However, for example, the muscles re-
sponsible for beating the wings of some flies contract at a
larger frequency than neurons are capable of firing action
potentials.1 Hence, other than neural mechanism must gener-
ate the necessary periodic muscle contraction. Remarkably, it
has been found that sarcomeres can oscillate spontaneously,
even in the absence of Ca2+.2,3

Possible mechanisms for spontaneous mechanical oscil-
lations are built on dynamic instabilities of molecular
motors.4–9 How ensembles of molecular motors coupled to
an elastic element can spontaneously oscillate is most easily
seen in the case of force-dependent detachment rates: con-
sider motors, which attach to a polar filament. Assume that
the motors compress an elastic element as they move along
the filament. Consequently, the load on the motors increases.
If the rate of motor detachment from the filament grows with
the applied force, the detachment of one motor can induce a
detachment avalanche. Indeed, with the detachment of each
motor, the load on the remaining attached motors instantly
increases accelerating their detachment even further. After all
the motors have detached, the elastic element relaxes and the
cycle starts again. Spontaneous mechanical oscillations
caused by molecular motors have been invoked to explain
various physiological processes, for example, the beating of
cilia and flagella,4,10 the rocking of mitotic spindles during
asymmetric cell division,11 and chromosome oscillations dur-
ing cell division.12,13

We employed motor induced dynamic instabilities to in-
vestigate spontaneous sarcomere oscillations and showed
that such a mechanism can generate relaxation waves similar
to those observed in myofibrils.14 In the present work, we
perform a numerical bifurcation analysis of the spontaneous
dynamics of sarcomeres. We start by analyzing the dynamics
of a half-sarcomere and find that a supercritical Hopf bifur-
cation is followed by a canard explosion and a subsequent
secondary saddle-node bifurcation resulting in a logarithmic
divergence of the oscillation period. Sarcomeres show phase-
shifted oscillations of the forming half-sarcomeres and can
present global �gluing� bifurcations. The phase-shifted oscil-
lations are at the basis of the traveling relaxation waves in
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myofibrils and can be used to generate a simple self-
organized swimmer.15

II. DYNAMICS OF A HALF-SARCOMERE

A. Dynamic equations

We will start our analysis of the dynamics of sarcomeres
by considering one half of a sarcomere. While it is physi-
ologically not possible to cut a sarcomere along the M-line
into two functional halves, from a dynamic point of view,
they are the basic units of a myofibril. We describe a half-
sarcomere as consisting of effective motor heads, which are
elastically attached to a common backbone, see Fig. 1�b�.
The linker springs have a stiffness k and neighboring springs
on the backbone are separated by a distance d. Each motor
head i can attach to a polar filament. When a motor is at-
tached, it moves along the filament subject to a force-
velocity relation v�f�=v0�1− f / fs�, where the force f =kyi is
determined by the linker extension yi, v0 is the velocity of a
free motor, and fs is the force at which the motor stalls.
Motors in the overlap region of the motor and the polar
filament attach to the polar filament at a rate �a and detach at
a force-dependent rate �d�yi�. The elastic elements of a half-
sarcomere of length x are accounted for by a spring of stiff-
ness K with a rest length �0. We will now briefly introduce
the equations governing the dynamics of this system. The
equations are based on a mean-field analysis and a detailed
derivation can be found in Ref. 14.

The effective motors mentioned above result from aver-
aging over the M myosin motors in a slice of width d per-
pendicular to the sarcomere’s long axis. The size of d is
determined by the distance between adjacent myosin binding
sites on an actin filament. In the mean-field approximation,
we assume that all linker springs have the same extension,

yi=y for all i. Together, the motors generate thus a force
fm=−N�x�Qky, where N�x�= ��p+�m−x� /d is the number of
motors in the overlap region of the motor filament and the
polar filament, which are of length �m and �p, respectively,
and Q is the probability of a motor to be bound. Force
balance now gives a first dynamic equation: in the absence
of external forces, the motor force fm, the elastic force
fe=−K�x−�0�, and the effective friction force f f=−�ẋ sum up
to zero, fm+ fe+ f f=0, which implies

�ẋ = − N�x�Qky − K�x − �0� . �1�

The second dynamic equation is based on the geometrical
relation ẏi=v�yi�+ ẋ. In the mean-field approximation, ẏ can
be estimated by y ·�d�y�,11 so that

ẋ = y · �d�y� − v�y� . �2�

From Eqs. �1� and �2�, x can be eliminated by first equating
the respective right hand sides. Solving the resulting equa-
tion for x, computing the derivative with respect to time, and
using Eq. �2� then leads to

ẏ =
g�y� · �Qy − ��2/� − Q̇y · �� − �g�y��
�g��y� · �Qy − �� + Q · �� − �g�y��

. �3�

Here, g�y�=y����y�+1�−1 and we have scaled time by
�a and space by fs /K, yielding the dimensionless parameters
�= fs�a / �kv0�, �=dK / fs, �=�a��0−�m−�p� /v0, and
�=��a /K.

It remains to determine the time evolution of the prob-
ability Q for a motor to be bound. An effective motor is
attached to the polar filament, if at least one of the constitut-
ing motors is bound. Assuming an exponential dependence
of the detachment rate on the force for an individual motor,
the rate’s force dependence of an effective motor can be
expressed as

��y� = ���0 exp�− ��y�� + 1�M − 1�−1. �4�

Here, �0 is the fraction of the attachment and detachment
rate of an unloaded individual motor while �	0 determines
the sensitivity of the detachment rate to the force acting on
an effective motor, which is built from M myosin motors.
This force is equal to the force the motor exerts on the fila-
ment. Thus, Q evolves according to11

Q̇ = �1 − Q� − Q · ��y� . �5�

Stationary states �Qs ,ys� of the dynamic Eqs. �3� and �5�
are determined by either

g�ys� = 0 and Qs = �1 + ��ys��−1 �6�

or

Qsys = � and Qs = �1 + ��ys��−1. �7�

Let us note that the extension x of the half-sarcomere is not
stationary for ys and Qs given by Eq. �7�. In fact, Eqs. �1� and
�2� imply in this case ẋ=const. We note further, as ẋ
0, that
the element shortens. This shortening should obviously stop
at a certain minimal half-sarcomere extension, but this pro-
cess is not captured by the dynamic Eqs. �3� and �5�. We will
now discuss the stability of the stationary states �Qs ,ys�.

FIG. 1. �Color online� �a� Illustration of a sarcomere. Bipolar myosin fila-
ments interdigitate with actin filaments, which are attached with their plus-
ends to Z-disks. Upon activation of the motors, the actin filaments are pulled
toward the M-line resulting in sarcomere contraction. �b� Illustration of the
model describing the dynamics of a half-sarcomere. The parallel actin and
myosin filaments are, respectively, replaced by single effective filaments.
Motors are attached via elastic springs of stiffness k with extension y to the
common backbone, separated from each other by a distance d. These effec-
tive motors are processive and have a well-defined force-velocity relation,
see text. The motors’ detachment rate is force-dependent. A spring of stiff-
ness K accounts for the elastic components of the structure.
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B. Linear stability

Let us first focus on the stationary states with g�ys�=0 as
determined by Eq. �6�. For all parameter values, these equa-
tions have at least one solution with ys	0. We will consider
in the following the effects of variations of the parameter �,
but the stationary states’ stabilities can also be affected by
varying the other system parameters.14 Our findings apply,
mutatis mutandis, to changes of their values, too. Since for
large enough values of �, the stationary states given by Eq.
�6� are stable, it turns out to be convenient to discuss the
effects encountered by decreasing �.

There are two critical values �cr
� at which the stationary

state changes stability. They are given by

�cr
� =

�� + ���ys� + 2�Qsys + C

2�� + ���ys� + 1�

�
���� + ���ys��Qsys + C�2 + 4QsysC

2�� + ���ys� + 1�
�8�

with

C = �Qs���ys� + 1 − ys���ys��/g��ys� . �9�

Since the absolute value of the term involving the square
root is always smaller than the modulus of the other term,
either both values are positive or negative. The latter case is
irrelevant because � must be positive. At �=�cr

+ ��h, we find
a backward Hopf bifurcation, see Fig. 2, while for �=�cr

− the
system undergoes a forward Hopf bifurcation. For the pa-
rameter values used in Fig. 2, the bifurcations at �=�cr

+ and
�=�cr

− are supercritical and subcritical, respectively.
Hopf bifurcations are possible under two conditions. On

the one hand, it is necessary that �	Qsys, while on the other
hand, we must have ys���ys�	��ys�+1. The physical origin
of the first inequality is the following: when the system is
stretched by a distance d while keeping the linker extension
ys and the fraction of bound motors Qs constant, one effec-
tive motor leaves the overlap region of the polar filament and
the motor filament. If the above condition is violated, then

the decrease of the elastic force fe by Kd is smaller than the
corresponding reduction of the motor force fm and the elastic
force will further extend the structure. If, on the contrary, the
half-sarcomere is compressed by a distance d, then an analo-
gous reasoning shows that the motors would win and further
shorten the half-sarcomere. Incidentally, the stationary states
given by Eq. �7� with Qsys=� define the marginal line sepa-
rating states, respectively, fulfilling and violating �	Qsys.
We will come back to this point below.

The second condition necessary for a Hopf bifurcation
implies that the motors’ detachment �or attachment� rates
must depend on the force applied to the motor. This is the
formal expression of the avalanche of motor detachments
mentioned in Sec. I to be at the origin of the spontaneous
oscillations.

Let us note that at the bifurcation point, the critical fre-
quency fh is given by

fh =
1

2�
� ��1 + ��ys���� − Qsys�2

����� − Qsys� − Qs��/g��ys�
. �10�

The frequency thus increases with the motors’ detachment
and attachment rates and increases with increasing stiffness
of the spring K.

C. Canard explosion of the limit cycle

Close to the bifurcation point, at �	�c
�h, the limit
cycle is strongly distorted and the amplitude explodes. For
small changes in �, ��−�c� /�
10−5, the amplitude in Q
increases threefold, see Fig. 2. Also the oscillation shape
changes significantly, see Fig. 2 inset. For �
�c the system
clearly exhibits relaxation oscillations. Hence, the system
contains two well-separated time scales. Typically, the dy-
namics of Q is faster than that of y. However, the degrees of
freedom corresponding to the two time scales are really non-
linear functions of Q and y. Locally, the fast and slow de-
grees of freedom can be determined by diagonalizing the
linearized dynamic equations. As a simple approximation,
we use Z=Q+y as the fast mode and Q as the slow mode in
the whole phase space.

The dramatic increase of the oscillation amplitude for
small parameter changes is indicative of a canard
explosion.18 The reason behind this phenomenon is the sys-

tem’s excitability. Figure 3 shows the nullclines Ż=0 in blue

and Q̇=0 in red. The nullclines partition the phase space into

regions with well-defined signs of Ż and Q̇. The Q-nullcline
is independent of � and shows the typical S-shape common
to oscillators presenting a canard explosion.19 As long as
�	�h, the intersection point of the two nullclines, which
corresponds to the stationary state �Qs ,ys�, attracts the trajec-
tories in its vicinity �not shown�. For �c
�
�h, small am-
plitude oscillations emerge, see Fig. 2 inset. However, in
both cases, the system is excitable: for a large enough per-
turbation, the system first moves away from the respective
fixed point or limit cycle and makes an excursion before
returning, see Fig. 3. For �	�c, the excursions suddenly
become part of the limit cycle leading to the explosion, see
Fig. 2.

FIG. 2. �Color online� Hopf bifurcation and canard explosion in a half-
sarcomere. The stationary value Qs of the binding probability given by
Eq. �6� is unstable for �
�h=0.933 and limit cycle oscillations emerge. At
�	�c the oscillation amplitude explodes and relaxation oscillations are
clearly detectable, see the inset. Parameter values are �=0.82, �=−82.4,
�=6.6, M =100, �0=0.01, �=3, and �=0.926 �inset, dashed� as well as �
=0.9265 �inset, solid�. Numerical solutions are obtained using AUTO07P

�Ref. 16� and the XPPAUT software �Ref. 17�.
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Let us note that not all limit cycles in the system show a
canard explosion. For example, in the limit �→0 and
�→0, the two values of �h and �cr

− approach each other and
the limit cycles exist in an interval that is too small to allow
the explosion.

D. Secondary bifurcations

We will now discuss the stationary states given by the
solutions of Eq. �7�. We have mentioned already that these
states are not associated with a stationary half-sarcomere ex-
tension x; instead, the half-sarcomere’s length shortens at
constant speed. Similar to our discussion of the stationary
states determined by Eq. �6�, one might thus be inclined not
to consider them further. However, as we will see, these
states can have a profound effect on the limit cycles pre-
sented above.

In contrast to the stationary states discussed so far, the
solutions to Eq. �7� exist only for values of � below a critical
value �sn. At �=�sn, two stationary states emerge through a
saddle-node bifurcation. The value of �sn can be determined
by first eliminating Qs from Eq. �7� giving � as a function of
ys and then using d� /dys=0. This yields the following con-
dition for ys

sn�ys��sn�:

0 = ys
sn���ys

sn� − ��ys
sn� − 1. �11�

The sought for value is then ��ys
sn�. In the limit exp���ys��

��0, where ��ys�	�M�0 exp�−��ys���−1, we explicitly
obtain

ys
sn = �−1�W�M�0/exp�1�� + 1� , �12�

where W is the Lambert W-function.
A linear stability analysis shows that both states have a

marginal direction with a growth exponent �1=0. The second
growth exponent is �2=ys���ys�−��ys�−1, which has a dif-
ferent sign for the two states. Numerically, we find that the
marginal direction can be nonlinearly stable or unstable.
Thus, the fixed points correspond to a saddle and a node,
which might be stable or unstable. Remarkably, the stability
of the node is intimately related to the saddle point given by

Eq. �6�. Indeed, for �→0 one of the two solutions of Eq. �6�
will have Qs→0, while the other one has Qs→1, see Fig. 4.
This implies that the stationary state of Eq. �6� must, for
some �, be equivalent to the saddle or the node because
equal values of Qs imply equal values of ys. Analyzing the
flux lines of the dynamics for Q, we find that the crossing
always occurs for the saddle. Furthermore, if the fixed point
given by Eq. �6� is stable for this value of �, that is �sn	�
	�h, then the node is stable, otherwise it is unstable.

As long as the saddle-node bifurcation occurs such that
the limit cycle does not coexist with the saddle and the node
for any value of �, the “physically relevant” dynamics is not
affected by the saddle-node bifurcation. In the opposite case,
however, it can have dramatic consequences. This is related
to the observation we made above, namely, that a Hopf bi-
furcation can only occur for Qsys
�, while Qsys=� is part
of the conditions determining the saddle and the node. Even
though these two conditions apply to two different fixed
points, our numerical analysis strongly suggests that when-
ever there is a stationary state with Qsys=� then the system
does not have any stable limit cycle solutions. See Fig. 4
for an example, where the limit cycle suddenly vanishes for
�=�sn.

How does a limit cycle vanish as �→�sn? First of all,
we observe that the limit cycle’s amplitude does not change
in this case, while its period � diverges logarithmically,
�
�log��−�sn��, see Fig. 4 inset. This behavior is character-
istic for a saddle-loop or homoclinic bifurcation. In such a
situation, a limit cycle collides with a saddle point, which
results in a homoclinic orbit and the destruction of the limit
cycle.

Let us finally remark that the disappearance of a limit
cycle through a homoclinic bifurcation together with the ap-
pearance of a saddle-node suggests that the system is close to
a Bogdanov–Takens bifurcation.20,21 At such a bifurcation,
which is of codimension 2, a saddle-node disappears. Fur-
thermore, in the vicinity of the bifurcation point, a limit

FIG. 3. �Color� An excited trajectory in phase space �Z ,Q� and nullclines
for Q �red� and Z �blue� in the case of the half-sarcomere with �c
�
=0.93
�h. Inset I: corresponding time course Q�t�. Inset II: magnification
of the phase space around the fixed point. Single arrows correspond to slow
dynamics; double arrows correspond to fast dynamics. Other parameters are
as in Fig. 2.

FIG. 4. �Color online� Bifurcation diagram for a half-sarcomere. Stationary
states and limit cycles of the half-sarcomere as a function of �, respectively,
represented by the stationary and extremal values of Q. The solutions of
Eq. �6� and the bifurcating limit cycles are represented by solid lines, the
solutions of Eq. �7� are represented by dashed and dot-dashed lines. The
arrow indicates the saddle-node bifurcation point. At �cr

− , we have a subcriti-
cal forward Hopf bifurcation. Inset: the oscillation period logarithmically
diverges as �→�sn. Parameters are as in Fig. 2.
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cycle appears via a Hopf bifurcation of the node. The cycle
becomes unstable via a homoclinic bifurcation. However, we
do not discuss this point any further, but rather turn to the
case of a sarcomere.

III. DYNAMICS OF A SARCOMERE

A. Basic oscillation modes

A sarcomere consists of two identical half-sarcomeres
that are rigidly coupled at their M-lines. The dynamic equa-
tions for a sarcomere are for one given by the force balance
on each half-sarcomere. Explicitly, this leads to

f f,1 + 2�fe,1 + fm,1� − �fe,2 + fm,2� = 0, �13�

f f,2 + 2�fe,2 + fm,2� − �fe,1 + fm,1� = 0, �14�

where the indices 1 and 2 serve to distinguish between one
and the other half-sarcomere. Applying the same approach as
in Sec. II, we obtain dynamic equations for the linker exten-
sions yi, i=1,2, of the two half-sarcomeres,

�g��y1� + 2�1 − �2

− �1 g��y2� + 2�2
��ẏ1

ẏ2
� = �2�1 − �2

�1 − 2�2
� , �15�

with �i=��Qi��−��2g�yi�+g�yj�� /3� / �Qjyj −�� for j=1,2 ;

j� i and �i=g�yi� · �Qiyi−��− Q̇i�i / ��Qi�. The dynamic
equations for the respective attachment probabilities Qi,
i=1,2, remain unchanged,

Q̇i = �1 − Qi� − Qi · ��yi� . �16�

As we have seen in Sec. II B, half-sarcomeres can oscil-
late spontaneously and so one might—rightfully—expect
sarcomeres to oscillate spontaneously, too. However, there is
no parameter adjusting the coupling strength between the
two halves of a sarcomere. Consequently, its dynamics can-
not easily be understood on the ground of the results ob-
tained for half-sarcomeres. Rather, it has to be viewed as one
self-sustained oscillator with proper oscillation modes. They
do not result from synchronization of two independent oscil-
lators.

After these words of caution, let us now discuss the dy-
namics of the sarcomere. For the analysis of the sarcomere
dynamics, we will consider � as the control parameter. In this
way, the results can readily be applied to the self-organized
swimmer presented in Ref. 15. A second reason for using �
as control parameter will be given below. As above, changes
of other parameter values can produce similar effects.

Figure 5 summarizes the bifurcation scenario upon
variation of �. The system’s stationary states are given by
those of the half-sarcomeres, because for the stationary states
the sarcomere equations do decouple correspondingly. We
will only consider the physically relevant situation when
both half-sarcomeres are in the state determined by Eq. �6�.
For sufficiently large values of �, this state is stable. For
decreasing values of �, the system encounters a supercritical
Hopf bifurcation at �=�1 and starts to oscillate. In this state
O1, both half-sarcomeres oscillate in the same way, but the
oscillations are phase-shifted by half a period, �=� /2.15 O1

is invariant under simultaneous exchange of the half-

sarcomeres and a time-shift of � /2. For �=�2, there is a
second Hopf bifurcation leading to a limit cycle O2. In this
state, which is always unstable, the two half-sarcomeres os-
cillate synchronously, �=0. The critical values of the two
oscillatory instabilities are given by

�1 =
3�Qs�1 + ��ys� − ys���ys��
g��ys��� − Qsys��1 + ��ys��

−
3�� − Qsys�
��1 + ��ys��

, �17�

�2 = �1/3. �18�

For �=�c, the out-of-phase mode O1 loses stability via a
pitchfork bifurcation. The frequency and the amplitude of the
emergent limit cycle Sw �Ref. 22� are essentially the same as
for O1 and also the form of the half-sarcomere oscillations
remains quite similar. In contrast, the phase shift � does
change. That is, y1�t�	y2�t��� and Q1�t�	Q2�t��� with
��� /2. The slight differences between the oscillations of
the two half-sarcomeres represent a spontaneous breaking of
the Z2 symmetry of the dynamic equations. As a conse-
quence, two mutually symmetric solutions emerge at the bi-
furcation point. As the value of � is further decreased, the
phase shift � further departs from � /2 but does not vanish in

FIG. 5. �Color� Limit cycles of sarcomeres. �a� Bifurcation diagram of the
sarcomere. �b� Relative phase � between the two half-sarcomeres for the
limit cycles. Stable states are represented by continuous unstable states by
dashed lines. For �	�1 the system has a stable stationary state St. For
�=�1, St loses stability and the oscillatory state O1 with �=� /2 emerges.
For �=�c, O1 loses stability and the limit cycle Sw with ��0 emerges. For
�=�2 an unstable mode O2 with �=0 bifurcates from St. Inset: detail of the
bifurcation diagram around �=�c in terms of L2 with L2=�−1
0

��Q1
2+Q2

2

+y1
2+y2

2�dt. Parameter values are �=0.49, �=−9.9, M =10, and �=0.16.
Other parameter values are as in Fig. 2.
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the limit �→0. This is in accordance with the global insta-
bility of states with �=0. Let us note that only for variations
of � did we find two subsequent bifurcations. Changing � or
� with all other parameters fixed can either lead to a desta-
bilization of the stationary state or of the oscillatory mode
O1, but not of both in succession, further justifying our
choice of the control parameter.

Similar to the canard explosion for a half-sarcomere, the
limit cycles of a sarcomere can be strongly distorted for
small changes of the control parameter. In this case, the dy-
namics on the limit cycle switches between small amplitude
oscillations and large relaxation cycles. This is an example of
mixed mode oscillations which are intimately linked to the
canard phenomenon23,24 and can indeed be interpreted as a
generalization of the canard phenomenon.25 Here, we do not
investigate this phenomenon further.

B. Gluing of cycles

We had seen above that half-sarcomeres can present ho-
moclinic behavior. This remains true for the sarcomere, al-
beit in a different form. As the sarcomere’s system param-
eters are changed so that it approaches a saddle-loop
bifurcation, there are two distinct limit cycles that are about
to be destroyed simultaneously. This is a consequence of the
Z2 symmetry of the dynamic equations that has been broken
spontaneously. However, instead of turning into homoclinic
orbits after the bifurcation point, the two limit cycles fuse
and form one common limit cycle. This phenomenon is
called a gluing bifurcation.26,27

In Fig. 6�a�, we present the two limit cycles prior to a
gluing bifurcation at �=�g. The projection onto the
�Q1 ,Q2�-plane clearly reveals their symmetry. After the bi-
furcation, �
�g, the two limit cycles have fused and look
similar to the union of the two distinct limit cycles before the

bifurcation, see Fig. 6�b�. That is, the Z2 symmetry is spon-
taneously restored! The scaling behavior of the temporal pe-
riods at the bifurcation is again logarithmic from both sides,
like in the half-sarcomere case, see Fig. 6�c�.

Gluing bifurcations are of codimension 2, so the varia-
tion of a single parameter, in our case �, is generally insuf-
ficient to hit the bifurcation point. Inspection of the dynamics
in the full phase space �Q1 ,Q2 ,y1 ,y2� shows indeed that the
system’s behavior only resembles a gluing bifurcation.
Rather, the phenomenon shown in Fig. 6 reflects ghost dy-
namics in the vicinity of a gluing bifurcation.

Note that beside the gluing bifurcation, the Z2 symmetry
of the dynamics can also be restored via the transition from
state Sw to O1, which is shown in Fig. 5�a�.

C. Chaotic behavior

While the sarcomere states that we discussed above all
have a counterpart in the dynamics of half-sarcomeres, there
are states that are genuinely linked with the sarcomere. In
fact, the limit cycle Sw can undergo further Hopf bifurca-
tions, a phenomenon that is absent for half-sarcomeres. The
second Hopf bifurcation generates a state Sw� with two in-
commensurate frequencies, while Sw becomes unstable, see
Figs. 7�a� and 7�b�. Further bifurcations can occur. As a con-
sequence, the state Sw� can either vanish through a back-
ward Hopf bifurcation or acquire another frequency through
another forward Hopf bifurcation. Still, another possibility is
the appearance of apparently chaotic solutions, see Fig. 7�c�.
The system thus displays the classical Ruelle–Takens route
to chaos via three subsequent Hopf bifurcations. After the
third bifurcation, even infinitesimal perturbations convert the
periodic into chaotic motion. The chaotic regime extends
only over a finite region in parameter space and ends at some
finite value of �.

IV. CONCLUSIONS

In this work, we have studied a model for the dynamics
of muscle sarcomeres. Our analysis shows that load-
dependent detachment rates of myosin motors in conjunction
with the elastic components present in sarcomeres lead to
rich dynamic behavior of half-sarcomeres, including Hopf
bifurcations, canards, and homoclinic bifurcations. Some of
this behavior is rather common for relaxation oscillators and
has been found also in other cytoskeletal processes involving
force-dependent detachment rates. In the work by Enculescu
et al.,28 the dynamics of polymerizing actin filaments at a
surface has been studied. There filaments can attach to the
surface and detach with a load-dependent rate. For the analy-
sis of that model, a similar mean-field approximation as
used in the present work and as originally proposed by Grill
et al.11 had been applied. The canard explosion as well as the
homoclinic bifurcation should, however, be independent of
this approximation and originate really from the detachment
rate’s load dependence.

The sarcomere, which can be viewed as two coupled
half-sarcomeres, largely inherits the dynamic behavior of the
half-sarcomere. However, due to the symmetry of the sys-
tem, the homoclinic bifurcation turns into a gluing bifurca-

FIG. 6. �Color online� Gluing bifurcation in a sarcomere. ��a� and �b��
Projection of the system’s trajectories onto the �Q1 ,Q2�-plane. Arrows indi-
cate where the cycles glue together. �a� The two mutually symmetric limit
cycles for �=0.64��g, �b� the limit cycle for �=0.63
�g. �c� Period � of
the limit cycles before �stars� and after �crosses� gluing. Parameter values
are as in Fig. 2 except for �=33.
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tion and two limit cycles bifurcate from the stationary state:
one with the two half-sarcomeres oscillating with a phase
shift of � /2, the other with no phase shift. While the latter is
always unstable, the former is stable until it loses stability
through a pitchfork bifurcation, which leads to a change in
the phase shift. This bifurcation leads to traveling
contraction-relaxation waves along myofibrils. Our under-
standing of this bifurcation is currently limited. There is no
coupling parameter that could be varied between the two
half-sarcomeres. Consequently, this instability cannot be un-
derstood by a perturbation calculation.

The bifurcation resembles the behavior of two pulse-
coupled integrate-and-fire neurons.29 In that system, phase-
shifts different from � /2 are generated if the coupling be-
tween the two neurons occurs via sufficiently short-lived
pulses. In our system, the analog of a pulse would be the
force exerted by one half-sarcomere onto the other during the
rapid relaxation. A formal mapping of our system onto the
neuron case does not seem to be possible though.

A number of different proposals have been made to ex-
plain the spontaneous oscillations of muscle sarcomeres.
They can be divided into two classes, those with a delayed

force response and those with an anomalous force-velocity
relation.30 The mechanism we studied here belongs to the
second class and is the only one we know of so far, which is
capable of reproducing the relaxation waves along myo-
fibrils. How can different mechanisms be distinguished ex-
perimentally? As we have seen above, the dynamics of our
model is quite rich. Due to the canard explosion, it might be
extremely hard to experimentally verify the Hopf bifurca-
tion. For a myofibril, that is a chain of sarcomeres, the ho-
moclinic bifurcations imply extremely slow propagation ve-
locities of the relaxation waves. Stochastic effects are likely
to mask this phenomenon. Also to distinguish chaotic behav-
ior from stochastic dynamics is challenging. For these rea-
sons, a quantitative comparison between our mechanism and
experimental results requires a stochastic analysis. Still the
different dynamic regimes found in our analysis of the mean-
field model suggest a rich behavior of sarcomeres that should
have observable effects in the real system.
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