
Reconstruction and Visualization of
Coordinated 3D Cell Migration Based on Optical Flow

Christopher P. Kappe, Student Member, IEEE, Lucas Schütz, Stefan Gunther,
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Fig. 1: Analysis pipeline: In a first step, we reconstruct local flow information from the 3D+t microscopy data using a combination
of image processing and optical flow computation. Next, the global vector field is reconstructed using scattered point interpolation.
This serves as input to the pathline integration which results in a reconstruction of cell trajectories. The pipeline finishes with a set
of visual and numerical methods for error control and a new LIC variety for better pattern analysis.

Abstract—Animal development is marked by the repeated reorganization of cells and cell populations, which ultimately determine
form and shape of the growing organism. One of the central questions in developmental biology is to understand precisely how cells
reorganize, as well as how and to what extent this reorganization is coordinated. While modern microscopes can record video data for
every cell during animal development in 3D+t, analyzing these videos remains a major challenge: reconstruction of comprehensive
cell tracks turned out to be very demanding especially with decreasing data quality and increasing cell densities. In this paper, we
present an analysis pipeline for coordinated cellular motions in developing embryos based on the optical flow of a series of 3D images.
We use numerical integration to reconstruct cellular long-term motions in the optical flow of the video, we take care of data validation,
and we derive a LIC-based, dense flow visualization for the resulting pathlines. This approach allows us to handle low video quality
such as noisy data or poorly separated cells, and it allows the biologists to get a comprehensive understanding of their data by
capturing dynamic growth processes in stills. We validate our methods using three videos of growing fruit fly embryos.

Index Terms—Cell migration, vector field, 3D, time-dependent, LIC, tracking, validation

1 INTRODUCTION

Light-sheet microscopy has been considered one of the major break-
throughs in biology in recent years. The novel microscopes can record
high resolution 4D videos of growing organisms that capture intri-
cate structure formation in 3D at low photoxicity, i.e. without damag-
ing the imaged organism. Expectations towards this novel technique
are high as all relevant information for a holistic analysis of morpho-
genetic processes during animal development are captured in this data
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[18, 23, 25]. The data, however, proves to be hard to analyze. Ma-
jor hurdles are described by biologists as the lack of dedicated analy-
sis software, the increasing scale of the data (up to 4 terabyte of raw
data per data set), and the inherent noise in the data [9, 44]. This, in
essence, translates into known visualization problems [51], namely, (i)
depiction of nested objects and application of “biologically plausible”
colors, (ii) simultaneous visualization of experimental data and de-
rived structures and properties, (iii) display of multidimensional data
into biological context, (iv) generation of abstract representation and
illustrative renderings, (v) concurrent analysis of data from multiple
experiments, and (vi) interaction with raw and processed data.

In this paper, we concentrate on the reliable reconstruction of coor-
dinated cell migration and its intuitive depiction in developing organ-
isms to address challenges (ii), (iv), and (vi). We particularly consider
these visualization challenges in the context of animal gastrulation.
Animal gastrulation comprises the first visible, morphological modi-
fication of the growing organism at the beginning of its development
(fig. 2), and it describes the transition from a sphere of cells to an em-
bryo with three layers of cells, with each layer giving rise to different
parts of the adult animal. In biology, the process of gastrulation serves



as widely adapted model to study how organisms generate morpho-
logical order and structure and how this is achieved in an interplay of
genetic regulation and mechanophysical mechanisms, a process often
referred to as morphogenesis [24, 50].

A critical step in the analysis of morphogenetic processes like gas-
trulation is the understanding of cell migration and cell reorganiza-
tion during development. Direct animations of the data are only a
first simple step in this direction. The more crucial and challenging
task is the reliable extraction of motion patterns from the given video
data. The extraction of motion patterns allows the biologist to iden-
tify areas of coordinated cell migration, which is a prerequisite to link
morphogenesis with the underlying activity of developmental genetic
networks. From the perspective of data visualization, the extraction of
motion patterns requires the solution of a spatio-temporal correspon-
dence problem. The video captures the individual cells in 3D at each
time step and the temporal resolution is commonly high enough to
ensure spatial overlap between cells in consecutive time steps. This
renders two conceptually different approaches possible for the recon-
struction of cell trajectories: (a) The images are segmented into in-
dividual nuclei and subsequently a correspondence problem is solved
that matches respective nuclei between time steps [21, 42, 2]. (b) A
flow field is reconstructed based on the 3D optical flow between subse-
quent images, and pathlines are integrated in the reconstructed vector
field. While the first method results in an exact reconstruction of the
cell lineages which is of high importance for many biological ques-
tions, it also requires a very good nuclei segmentation and a robust
tracking procedure to achieve satisfactory results. The second method
is better suited for more global patterns of cell migrations and has
lesser requirements to data quality.

While most available approaches concentrate on techniques as in
(a), we opt for the approach using the optical flow of video data to
reconstruct the underlying vector field (b). The reconstructed veloc-
ity field now opens up the wealth of existing flow visualization tech-
niques. We found texture-based approaches particularly suited and
adapt time-dependent volumetric line integral convolution (LIC) to our
data.

We make the following contributions:
• We present a pipeline to reconstruct the flow field from underly-

ing cellular motions in growing embryos.
• We integrate pathlines in these vector fields and validate their

correctness with respect to the imagery data.
• We adapt LIC to operate on this special type of time-dependent

volumetric data.
• We analyze the performance of the pipeline using videos from

developing fruit fly embryos and detail how these visualizations
can be used for advanced analysis.

2 RELATED WORK

In this paper, we develop a method to reconstruct a time-dependent
vector field from 3D videos and propose an adapted LIC version for
improved visualization.

Flow Reconstruction: Flow field reconstruction from image data
is a common problem in experimental fluid dynamics with a large vol-
ume of sophisticated solutions. Particle image velocimetry (PIV) is a
well-established method in this area using images of tracer particles
in the flow for the reconstruction [40]. PIV reconstructs the vector
field based on the solution of the correspondence problem between
two successive particle images [1] and is in spirit very close to the nu-
clei segmentation and tracking approach. A complementary approach
pursued in recent years is the reconstruction of fluid flow by means of
optical flow [17]. Liu and Shen [34] carefully derive the mathematical
connection between fluid flow and optical flow. Unlike PIV, the op-
tical flow based approach is very much suited for continuous patterns
in imagery data which are predominant in many biological application
settings.

Unsteady Flow Visualization: Since flow visualization is a very
established topic in the visualization community, numerous state-of-
the art reports have been written over time. In 2004, Laramee et al.

Fig. 2: Gastrulation in Drosophila: (left) Volume rendering of the mi-
croscopy data shows the morphogenetic changes in Drosophila over
time. (right) Volume rendering of cross-sections (white box in top
image) visualize processes in the interior and show surface shape
changes.

have surveyed a broad hierarchy of research that covers 2D, 2.5D, 3D,
steady and unsteady flow visualization problems and explicitly mark
the listed publications as such [31]. Post et al. give an overview over
techniques to compute various meta-information in flow data and track
it over time. There is also a survey particularly examining surface-
based flow visualization [13].

Kuhn et al. propose an approach based on pathlines enhancing the
existing techniques in two main points: Firstly, the seeding of the path-
lines is arranged in such a way that visual clutter appears as little as
possible – which is always a problem with these 3D visualizations; and
secondly, a carefully implemented new rendering technique allows a
quick execution. Aiming to improve particle-based flow visualization,
Günther, Kuhn et al. [16] explore a way of incorporating particle mass
into the typical integral curve visualizations. Krishnan et al. also in-
troduce a visualization tool for unsteady 3D flow [29]. It relies on the
extraction of apt surfaces in the volume to visualize the data. Time
surfaces show the temporal development of the flow; and streak sur-
faces represent the spatial properties of it. Ferstl et al. have further
explored the field of topology-driven streak surface construction [14].

Line Integral Convolution (LIC): The LIC method [7] has proven
to be an outstanding technique to produce flow visualizations. The
original algorithm has been enhanced and extended a lot in the course
of time, advancing from steady 2D to time-dependent 3D flow and
incorporating more and more additional features or increasing the per-
formance [49, 28, 56, 5]. Pioneering work that has enabled LIC visual-
izations of time-dependent data includes UFLIC [46] by Shen and Kao
and its accelerated variant AUFLIC [35] by Liu and Moorhead II. They
evolve from stream- to pathlines and use a successive feed-forward
scheme after the generation of one frame to realize a temporal coher-
ence between the output images for the subsequent time steps. Several
papers such as [47] by Shen and Kao and [33] by Li et al. propose tech-
niques that allow the visualization of unsteady flow on surfaces. Oth-



ers focus also on efficiency, performing the LIC computations only in
image space and utilizing the computational power of modern graph-
ics hardware where suitable [32, 52]. By 2005 the AUFLIC algorithm
was extended to handle time-dependent volumetric data. In this ap-
proach, called VAUFLIC [36], pathline integral convolution occurs in
a 3D input texture that is given by a noise function. Volume render-
ing techniques are used for the final representation. For example, the
volume can be sliced according to the region of interest defined by
the user; and areas of low velocity magnitude are made transparent to
reduce occlusion. Weiskopf et al. proposed a hardware-accelerated
approach to visualize time-dependent 2D and 3D vector fields [55].

Optical Flow: Optical flow [19] is a well-established technique to
reconstruct the correspondence problem in 2D videos. It approximates
the movement from one time step to the next and outputs the resulting
flow field. Most current algorithms tackle 2D videos to address prob-
lems such as segmentation and object tracking. The recently proposed
3D optical flow by Amat et al. [3] is dedicated to fluorescence videos
of growing embryos which suffer from general fuzziness and feature
complex motions. The algorithm first segments the data into fore- and
background based on simple intensity thresholding. On the foreground
super-voxels a Markov Random Field is computed that incorporates
motion smoothness constraints. The algorithm usually achieves very
precise results. Known issues arise in areas of complex motion such
as with cell divisions.

3 BIOLOGICAL BACKGROUND

While the conceptual pipeline we are going to propose is very generic,
we refer during the algorithmic description to a particular type of data
originating from light sheet-based microscopy. Hence, we work with
series of 3D images. Movement per voxel is detected using an opti-
cal flow algorithm especially designed for the given 3D+t data. The
particular organisms we have worked with are the fruit fly species
Drosophila melanogaster and Drosophila pseudoobscura.

3.1 Light-sheet Microscopy
For translucent organisms the necessary 3D+t video data can be ac-
quired using optical microscopy such as the recently developed light
sheet-based fluorescence microscopy (LSFM) [20, 22, 26]. The gen-
eral idea is to label cell nuclei with a fluorescent marker that is stim-
ulated during recording and shows up as high intensity values in the
resulting data. A strength of LSFM is the very low invasiveness of the
method that allows recording for extended periods of time (hours to
days) without damage to the specimen. The 3D videos feature a high
spatio-temporal resolution which allows for automatic segmentation
of small individual structures such as cells and cell nuclei [38, 45].

In this paper, we concentrate on morphogenetic processes at the
beginning of gastrulation in Drosophila. Images were recorded ev-
ery 30 seconds on a MuVi-SPIM [30] using four distinct views of the
embryo, which are created using two opposing cameras and rotating
the specimen by 90 degrees. Each view has a spatial lateral resolu-
tion of 0.26µm/pixel and an axial resolution of 2µm/pixel. All views
are registered with respect to each other into a common coordinate
system and fused into a single 3D image using a sigmoidal tissue scat-
tering model. The final image has an isotropic spatial resolution of
0.52µm/pixel.

We focused on a period of 50 minutes, corresponding to 100 time
steps at size 1008×351×335 voxels.

3.2 Embryonic Morphogenesis in Drosophila
Embryonic morphogenesis in Drosophila has been well characterized
in the past 30 years, leading to a comprehensive understanding of the
core aspects of gastrulation, both at the morphological and genetic
level [8]. Just prior to gastrulation, the Drosophila embryo consists of
a single epithelial sheet, the cellular blastoderm, consisting of about
6000 tall, columnar cells enclosing the central yolk, and a group of
about 30 germ line cells lying on the surface of this sheet at the poste-
rior pole of the embryo (the pole cells) [8] (fig. 2). At this stage, the
shape of the embryo along the head-to-tail (anterior-to-posterior) axis
resembles an irregular ellipsoid with a slimmer belly line at the head

Fig. 3: Overlay of raw data and scattered point data: The translucent
volume rendering depicts the microscopy data. The red spheres in-
dicate positions of extracted consistent connected components in the
optical flow.

than the tail. All relevant cells reside in the periphery of this irregular
ellipsoid, permitting to unroll the surface and study initial deforma-
tions in 2D.

With the onset of gastrulation, the cellular blastoderm first folds
a longitudinal patch on the bottom (ventral) side of the blastoderm
embryo. At either end of this ventral fold, but in processes develop-
mentally and genetically distinct from the ventral fold, further areas of
cells are gradually internalized. Additionally, a transient fold forms in
the anterior third of the embryo and separates the future head from the
remaining embryo (cephalic furrow), and two dorsal transversal folds
appear behind the cephalic furrow. Superimposed on invagination and
folding of the trunk of the embryo, the epithelial structures in the bot-
tom tail domain of the embryo (the so-called germband) start to extend
towards the tail. This extension is physically limited through the space
defined by the egg shell, which is why the tissue at the posterior pole
starts to fold back onto itself. During this extension, the blastoderm
cells on the top (dorsal) side of the embryo flatten into a single thin
sheet, which then folds up between extending germband and head.
Overall, gastrulation in Drosophila takes about 2.5 to 3 hours [8, 12].

Several of these core aspects of Drosophila gastrulation have been
studied by classical mutant studies. Typically in such studies a certain
gene function is switched off, which presumably leads to a change in
cell properties: the biologist then analyzes the embryo and decides,
whether the morphogenetic result is the same or different from a non-
affected embryo. Often these analyses have been carried out in fixed
(i.e. dead) animals, excluding most of the inherent dynamic from the
analysis. While numerous core aspects of gastrulation could be ana-
lyzed and genetically explained, many aspects of Drosophila epithe-
lial morphogenesis during gastrulation are still poorly understood at
the mechanistic level and have started to get investigated only in re-
cent years and with the help of image analysis and visualization tools
[41, 54, 39, 6, 27]. The advent of in-toto live imaging at high spatio-
temporal resolution in LSFM carries the promise that more such ad-
vances can be made, provided that the raw data can be effectively and
meaningfully visualized for analysis.

3.3 Biological Data Analysis Roadmap
The short-term goal regarding the presented data is to derive a quan-
titative description of in toto morphogenetic processes, ideally aiming
for a delineation of domains (surface areas) with similar or identical
cell behavior. To this end, coordinated motion patches have to be re-
constructed from the video data. This task comprises two stages: First,
cellular motions have to be reconstructed from the video data. Second,
feature-based analysis is required to identify coherent motion patches
in a 4D spatio-temporal setting. The resulting motion maps allow for
the definition of areas with coordinated morphogenetic activity, with
areas of high correlation indicating a strong and robust underlying ge-
netic regulation of morphogenesis. Using existing maps of gene ac-
tivity, the biologist can correlate areas of coordinated morphogenetic
activity with patterns of gene expression and thereby identify previ-
ously unknown regulators of cell behavior, epithelial morphogenesis,
and organismal development. In this paper, we address the first prob-
lem in this pipeline. We work towards the reliable reconstruction and
depiction of cellular migrations in 3D videos.



4 ANALYSIS PIPELINE

To support biologists in the analysis of coordinated cell migrations in
3D+t, we have developed the following five-step pipeline (fig. 1):

Sparse vector field reconstruction: In the first step, we aim at the
robust flow reconstruction between consecutive time steps. The in-
put data are 3D gray-scale image series as detailed in sec. 3.1. Using
the segmentation software Ilastik [48], we obtain a foreground mask
that identifies cell nuclei in the image data. Within the boundaries
of the foreground mask, the optical flow is computed using the algo-
rithm proposed by Amat et al. [3]. This results in a robust vector field
reconstruction with large undefined areas between cell nuclei. (Due
to the imaging modality a more detailed reconstruction is not possi-
ble.). To reduce storage size and facilitate standard robust interpola-
tion schemes, the field is further reduced to singular representatives
per cell nuclei. The output of the first step is scattered point vector
data. (→ sec. 5.1)

Interpolation: In the second step, we employ scattered point data
interpolation to obtain continuous vector information in the domain of
the embryo. (→ sec. 5.2)

Pathline Integration: In the third step, we use the reconstructed
vector field to integrate pathlines in the unsteady vector field. These
lines retrace the motion of the embryonic cells. (→ sec. 5.3)

Error Control: To validate the correctness of our results, we pro-
pose in the fourth step a set of tools for error control. We integrate
methods for both visual and numerical analysis. Using the visual
methods, the user can compare the reconstructed data to the input data
and compare arbitrary intermediate steps in the pipeline. The numer-
ical approaches employ the distances of the pathlines to the nearest
cell nuclei in respective time steps. Combining both approaches, we
obtain expressive visualizations that guide the user to potentially erro-
neous parts of the data. (→ sec. 7.3)

Adapted LIC: The last step in the pipeline is an adapted LIC vari-
ety. Our application partners found texture-based approaches particu-
larly useful for pattern detection in 3D+t. Hence, we propose a novel
LIC-variety in section 6 that takes the special hollow body structure of
our data into account.

5 FLOW RECONSTRUCTION

As detailed before, we are given a vector field based on the optical flow
of a video (section 3). Building upon the work of Liu and Shen [34]
and Corpetti et al. [11], we use the optical flow data to reconstruct
the fluid flow in the observational domain Ω. We assume that the
underlying flow field f is continuous and want to approximate this field
in the entire domain Ω using the optical flow as reference data.

This approach holds the following challenges: (i) The optical flow
can only be computed in areas of the video where enough textural in-
formation is present to estimate changes. Hence, no flow estimates
are given in the areas between the nuclei, though these parts belong
to the respective cells and move as well. (ii) Like all automatic anal-
ysis techniques optical flow results come with uncertainty. Especially
in areas that are challenging to track the flow may be erroneous. (iii)
The data that we are working with is very large. One time lapse con-
sists of around 100 3D images, each of which taking up approximately
850 MiB of memory. We target at a visualization on a desktop machine
to allow for ready to use, interactive data analysis.

The goal of this section is to estimate the fluid flow of the cells based
on the optical flow. In the following, we will refer to the interpolated
vector field as a function

f : Ω→V, Ω⊂ R3,V ⊂ R3.

5.1 Robust Sparse Flow Representation
The first problem that we address is making the measurements more
robust. The embryo videos often suffer from noise and varying inten-
sities as can be seen in fig. 2. Especially in the later time steps, the
flow reconstruction becomes progressively difficult for all currently
available techniques as contrast decreases and structures become less
distinct. As the optical flow already misses information in the embryo

Fig. 4: Connected components (black edges) and their respective cen-
ter of mass (red spheres).

domain in the first place (the non-fluorescent cell parts around the nu-
clei) which makes some reconstruction necessary anyway, we decided
to further reduce the flow data to individual robust representations per
cell. As cells move cohesively and are not subject to strong defor-
mations in our data, this is a valid reduction. In fact, for components
where small irregularities exist (like a few mismatched voxels), this
approach conveniently smoothes them away whereas one would have
trouble working on the fine grid data later in the pipeline.

5.1.1 Regular Connected Components
To identify consistent motion patches, we extract connected compo-
nents in the grid-aligned optical flow. We only consider areas with
non-zero velocity which already provides a fairly good segmentation
of individual nuclei (see fig. 4). Connected components are computed
based on a 33− 1-neighborhood. The resulting structures coincide in
95% of the cases with individual nuclei.

If the variance within a connected component C is low (see below
for details), we summarize the contributing voxel information in a sin-
gle representative c by averaging its positions and flow vectors:

pos(c) :=
1
|C| ∑

u∈C
pos(u) vel(c) :=

1
|C| ∑

u∈C
vel(u)

We found that the center of mass is a good cell representative and
coincides well with the imagery data, as can be seen from fig. 3.

To further improve the reconstruction quality, we take two mea-
sures: First, we filter connected components with a high variance in
the corresponding velocity vectors, and second, we filter connected
components that feature a very unusual flow pattern.

5.1.2 High-variance Connected Components
In many cases, the connected components are a good first approxi-
mation of individual nuclei. For densely packed cell compounds or
dividing cells, however, they are not able to separate the structures.
If the motion of all cells is very consistent, the joint representation is
not critical as our primary goal is to reconstruct the underlying flow
field. But in case of diverging motion, as occurs for example in the
case of dividing cells, this reduction would lead to an erroneous over-
simplification of the flow. To identify such high-variance connected
components, we investigate the standard deviation of the contribut-
ing velocity vectors. This gives a precise decision criterion: Either it
is very close to zero or it is clearly greater. To have some concrete
threshold, for our implementation, we decided that if it is larger than
0.15 times the mean velocity magnitude of the respective component,
we partition the connected component into coherent substructures.

Therefore, we chose an iterative approach based on k-means clus-
tering [37]. For a good initialization of the algorithm, we compute the
flow direction of highest variance using principal components analysis
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Fig. 5: Typical velocity magnitude histogram. The velocity magnitude
range was divided in ten equidistant bins. 8 points out of 4963 have
been classified as outliers.

on the vector data. Let aaa be the vector representing the axis with the
greatest variance (the eigenvector with the greatest norm). With the
mean velocity µµµ , we then set ccc1 = µµµ−aaa and ccc2 = µµµ +aaa as the initial
cluster centers. Using these starting positions the algorithm with k = 2
quickly converges to high-quality directions. In rare cases more than
two cells moving in different directions may be merged. Hence, we
continue the splitting until the variance is below the threshold.

5.1.3 Outliers
In our study, we found that we have to expect a few heavy outliers
in our data in terms of the velocity magnitude and direction. These
originate from errors in the optical flow and hence, we exclude them
from subsequent analysis. We base outlier classification on deviation
from the mean velocity magnitude µ and keep a point with velocity
magnitude v if

|v−µ| ≤ σ · c,

where σ is the standard deviation of all velocity magnitudes in the data
and c is a user-defined value to control the classification as outlier. By
default, we set a relatively high value of c = 5.15 for the embryo data,
to make sure we do not eliminate any actual data that might be part
of an interesting phenomenon. Figure 5 shows a typical histogram of
velocity magnitudes for one time step.

5.1.4 Data Compression
The condensed representation has the additional benefit that it signifi-
cantly reduces the memory footprint of the data. While the optical flow
data commonly amounts to approx. 80 GiB, the scattered point data
uses only 50 MiB – almost a factor 2000 which significantly increases
interaction performance and data loading.

5.2 Vector Field Interpolation
To reconstruct cell trajectories from the optical flow, we need to be able
to estimate flow information at arbitrary positions in the observational
domain Ω. This is commonly achieved using interpolation. We con-
sidered local methods only, to ensure acceptable computational costs
[15]. The general form of these local interpolants for scattered point
data is

f(xxx) =
1

W
·

n

∑
i=1

wi · f(qqqi) (1)

where qqqi ∈ Q are the local reference points and wi their respective
weights. W is a normalization factor.

5.2.1 Weighting Methods for Scattered Points
The weighting in eq. (1) defines how strongly each data point influ-
ences the interpolants in its vicinity. Two widely used weighting meth-
ods are Barycentric coordinates and inverse distance weighting. A
comprehensive survey of alternative strategies is given in [15].

Barycentric coordinate systems represent points as combinations of
polytope vertices and were classically defined with respect to triangles
and general simplices [43]. Barycentric coordinates are well suited
for scattered point data and a neighborhood graph that forms a convex

Fig. 6: Structure of the observational domain: Points of measurements
are indicated as black dots. Vector values are now reconstructed in the
vicinity of these points resulting in a bumpy volume.

polytope. This notion has been extended to general polytopes [53] and
point clouds [10]. We employ the following generalized Barycentric
coordinates for weighting:

wi =
n

∑
j=1

d j−di W = (n−1) ·
n

∑
i=1

di

where di represents the Euclidean distance between xxx and the i-th
neighbor.

Inverse distance weighting directly models the decreasing influence
of measurement points with increasing distance. Shepard’s interpola-
tion uses the reciprocal distance for the weighting:

wi =
1

1+dα
i

W =
n

∑
i=1

wi

where di = ‖xxx−qqqi‖ represents the Euclidean distance between xxx and
the i-th neighbor. Commonly the distance contains a power parameter
α to directly manipulate the spatial decay.

5.2.2 Local Neighborhood
To evaluate the interpolation, we have to define a neighborhood for
each position xxx in the observational domain Ω. Cells in tissue have a
clearly structured layout and are densely packed. The motion patterns
are commonly very smooth and we assume that cells only influence
their direct neighbors. Hence, we restrict the interpolation schemes
to the nearest neighbors. We construct the surrounding polytope Q
of the query position xxx using the four closest points within a maxi-
mum distance r. If the points are roughly coplanar, this amounts to
a quadrilateral in 3D; if they are not, we approximate interpolation in
a tetrahedron. We achieved best interpolation results by setting r to
the 66%-quantile of the 3-nearest neighbor distances of all the data
points. We explored alternative settings and found the value using this
heuristic most reliable across time steps and data sets.

For a fast computation of the k-nearest neighbor distances, we build
a k-d tree for each time step [4].

5.3 Pathline Integration
With the reconstructed vector field in the entire domain Ω, we can now
retrace the paths of cell nuclei using numerical integration. In accor-
dance with [46] we define them as follows. Let the time-dependent
input vector field be

f : Ω×T →V, Ω⊂ R3,T ⊂ R,V ⊂ R3.

Then a pathline p in Ω, parametrized by a time t ∈ T , can be defined
in terms of an integration procedure:

p(t +∆t) = p(t)+
∫ t+∆t

t
f(p(t), t)dt (2)

where p(t) is the position of an imagined particle at time t and
p(t +∆t) is its position after time ∆t has passed; the integral part de-
scribes the particle following the flow for the said time span.

For the given data we implemented Euler integration and a fourth-
order Runge-Kutta scheme with adaptive step-size.



6 HOLLOW BODY LIC
The visualizations presented so far are still not ideal for motion anal-
ysis in the embryo data. Animated volume rendering cannot be an-
alyzed in stills which makes the analysis of motion patterns rather
difficult. Geometric depictions of the pathlines are already quite ac-
cessible but strongly suffer from occlusion especially if the entire em-
bryo is rendered (we commonly only depict one half to avoid visual
clutter). To equip biologists with a visualization that can be easily
used in presentations and papers, we designed a modified LIC version
adapted to the given data. LIC is a well-established technique that has
seen many improvements over the years. In this section we summarize
the settings and alterations we made to fit time-dependent volume LIC
[56, 46, 47, 35, 36] to the given data.

Opacity: As we aim at the visualization of the flow inside a hol-
low body, we can employ 3D LIC and obtain already good results by
omitting the zero velocity parts. Care has to be taken not to introduce
holes in the surface as there are time spans in the development when
the local cell motion is very low in parts of the embryo. A second
challenge is the surface of the data. Due to the interpolation scheme
and the shape of the cells, the observational domain is a bumpy hollow
body as depicted in fig. 6.

The opacity of a voxel is determined using a combination of dif-
ferent concepts in our algorithm. Firstly, there are two cases when a
voxel, associated with a grid position xxx, is made completely transpar-
ent. These are

1. The voxel has not been hit by a sufficient number of pathlines.

2. The velocity magnitude at the voxel position is too low.

Secondly, if a voxel does not fall into one of the categories above,
the velocity magnitude v at xxx is linearly mapped to an opacity value
α ∈ [0,1]:

α = max
(

αmin,
v− vmin

vmax− vmin

)
Here, vmin and vmax are the minimum and maximum velocity magni-
tudes occurring in the full data set (regarding all time steps). αmin is an
adjustable parameter that guarantees a minimum opacity. This helps
avoiding undesired holes in the topology of the displayed objects and
achieves a smooth blending at the boundaries.

Input noise: For the initialization the LIC algorithm requires a
noise texture, in our case a 3D texture. An important parameter in
this context is the noise frequency ϕ [28]. Since the noise values are
saved in discrete voxels, the frequency describes how likely it is for
neighboring voxels to have the same value. The default is to have the
frequency match the voxel edge length l with ϕ = 1

l . A comparison
with a lower frequency is depicted in fig. 7. We see that, with de-
creasing frequency, the patterns become coarser. Thus a slightly lower
frequency can make the visualization clearer.

Seeding strategy: The next step is the pathline seeding. Here we
follow a two step approach. The first set of lines are started at the
nuclei positions stored in the point-based flow field. At these positions
we have the most accurate representation of the underlying field and
want to use the respective lines as much as possible. In a second round,
pathlines are started in the voxels that have not yet been hit by the LIC
algorithm and feature non-zero velocity. For good visual results we
employ the seeding strategy proposed by Stalling and Hege [49].

Convolution: Along the computed pathlines the texture is folded.
We closely adopt the method presented by Shen and Kao [46] with
a maximum hit value of 1 and a sampling size of ∆s = 0.5 · l. For
smoother pathlines we use a cubic spline interpolation on the integra-
tion results.

Color-coding: By construction, the direct results of LIC algorithms
are gray-scale images. Additional color-coding can be used to encode
relevant flow properties such as pressure, vorticity or the density in the
point cloud. In our examples, we always display the velocity magni-
tude since it is not directly discernible in the raw LIC image and is an
important characteristic of the flow.

(a) ϕ = 1. (b) ϕ = 1
8 .

Fig. 7: Influence of the input noise frequency on the final image for
different frequencies ϕ normalized by the output pixel edge length.
The vortices in the left part of the images are depicted by increasingly
rough lines with dropping noise frequency.

7 EVALUATION

As we work with data that suffers from much uncertainty in several
of the processing steps, validation is a critical issue to ensure trust-
worthy results. This means primarily that the computed pathlines –
if started at the position of a cell nucleus – should follow this point
over time. Validation against ground truth data, however, is in general
hardly applicable as the manual tracking of cells in 3D is very cumber-
some and time-consuming. So we did this only for synthetic 2D data
and performed a more user-friendly qualitative and a fully automatic
quantitative validation on the real data. The individual steps we took
are described in detail in the following sections.

7.1 Analysis of Robust Flow Representation
We manually checked the quality of the compressed flow representa-
tives. To this end, we concurrently displayed volume renderings of the
microscopy data and the extracted cell nuclei (fig. 3). In general, we
observed a very good agreement of the two modalities. As expected,
the largest errors occur in areas of poor video quality. The most com-
mon problem is closely located cells that could not be separated. But
as detailed before (see section 5.1), we found that such cells often fea-
ture a similar motion direction and their unified representation in the
reconstructed vector field did not introduce relevant errors.

7.2 Comparison of Interpolation Methods
To find the best suited interpolation settings for our data, we investi-
gated the quality of the local interpolation as well as the quality of the
resulting pathlines. We designed synthetic 2D data sets that modeled
common flow structures during embryonic morphogenesis. Figure 8
(left) gives a 5 point example of such a flow field. On the left and
the right side we have a pair of consistent vectors respectively, while
the central vector was slightly distorted and represents a contradicting
measurement. Using such examples we explore which technique gives
most reasonable results in the presence of noisy data.

The data in fig. 8 (left) was interpolated using the two presented
methods and a neighborhood of size 4 (k = 4) and quadratic distance
(α = 2). The example illustrates the fundamental properties of the
two interpolation methods: While Barycentric coordinates result in a
very smooth vector field that reduces the influence of individual data
points, Shepard’s interpolation more closely follows the data. With
Barycentric coordinates, the vectors rapidly start to bend towards the
right side; this behavior is far less pronounced in the case of Shep-
ard’s method. Similar observations can be made for the distribution of
norms of velocity encoded in color. While large velocity magnitudes
are present only in a small area on the left-hand side for Barycentric
coordinates, the high-velocity area is far larger in Shepard’s method
and better reflects the underlying data. Overlaying the interpolation
with the microscopy data, we could confirm the better match of Shep-
ard’s interpolation.
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Fig. 8: Comparison of interpolation methods: The choice of interpola-
tion method has a strong influence on the resulting field as is demon-
strated for 2D (left) and 1D (right).

Figure 9 gives a comparison between a raw point cloud visual-
ization and an image based on interpolation. For the raw image we
rendered a color-coded sphere at each measurement point. The same
color-coding was used for the interpolated image where we derived
interpolated values for each voxel and used volume rendering to rep-
resent the data.

The influence of the parameters k and α on the interpolation can be
seen more easily in the 1D example (fig. 8 (right)). For a 2-neighbor-
hood, Barycentric and Shepard’s interpolation are very similar. The
reconstructed function goes through the measurement points in both
cases and results in a roughly linear interpolation between data points.
Deviations from linear interpolation, as can be observed at the point
of discontinuity between the second and third point, result from the
fixed local support and the strong variations in function values which
we chose to clearly demonstrate the characteristics of the two methods.
As the flow field of the cells is much smoother, such artifacts are not to
be expected in real data. As we increase the neighborhood size, we can
clearly see the (in this case unwanted) balancing effect of the Barycen-
tric interpolation. For k = 3 the interpolated function no longer passes
through the extremal points but is a smoothed version. Increasing the
power of the distance measure α increases the local influence of the
measurement points. k = 2 is the commonly recommended choice and
results in smoother transitions between the values.

Based on these observations, we chose Shepard’s interpolation for
our data with k = 4 and α = 2.

7.3 Visual Validation
Our first validation approach aims at the visual integration of the data
processing stages. For each stage we calibrated the visualizations such
that they can be combined with each other and allow for concurrent
investigation:

Microscopy Data: To depict the microscopy data, we use basic
volume rendering to provide data context. The transfer function con-
tains a single color and sets the background pixels to fully transparent.
The transparency for the nuclei can be modified depending on whether
the data is combined with other modalities or not. Time-series are de-
picted by means of animation (fig. 3).

Scattered Point Data: The scattered point data is represented by
color-coded arrow glyphs that are a combination of a sphere centered
at the point location and a cone pointing in the direction of the local
flow vector. We use color-coding to encode time. A fixed color-coding
for the given time frame enables the user to identify missing cells and

(a) Each data point is drawn as a sphere and colored according to its velocity.

(b) The data is rendered as a 3D texture where each voxel is colored according to the
velocity interpolated at its center (very small values lead to transparency).

Fig. 9: Interpolation example: Comparison between a depiction of the
raw data (a) and a volume rendering of interpolated values (b).

t ∊ [70,  74]

t ∊ [70,  84]

Fig. 10: Visual pathline validation: Pathlines were tracked over five
time steps. The images show a concurrent depiction of extracted cell
positions and pathline trajectories. The closeup on the right shows a
difficult area with poor results. The optical flow in the center is very
good as can be seen in the central closeup. In this area, pathlines can
be computed over long time frames reliably (bottom right).

infer time points of erroneous cells in the data (fig. 10).
Pathlines: To depict the quality of the integration, we encode the

pathlines as cuboid strips. We do not employ smoothing schemes such
as splines to correctly represent the computed data at this stage. The
diameter of the cuboids is slightly smaller than those of the sphere of
the point data to allow for concurrent inspection. We use the same
color coding for both pathlines and point data to support the user in
the temporal orientation (fig. 10).

Using this setup we inspected the reconstructed cell trajectories in
the three data sets. Figure 10 shows examples for the D. pseudoob-
scura data set where cells were traced from time step 70 through 74.
We can clearly see the different flow rates resulting in pathlines of vari-
able length. While there is barely any motion in the anterior part of the
fly, strong dorso-ventral motions towards the posterior pole can be ob-
served. The pathlines in the central part are very reliable and closely
follow the extracted nuclei positions as can be seen in the closeup. In
this area even longer pathlines over 15 steps can be computed that still
give high-quality results.

Towards the posterior pole, the results get progressively worse due
to decreasing quality of the optical flow. This is already clearly visible



Table 1: Pathline Integration Error by Step Size

∆t 2 1 1
2

1
3

1
4

error 23.82 16.88 16.96 17.16 17.37

in the depictions of the scattered point data where the arrow glyphs
feature a very chaotic direction profile. No consistent motion can be
identified in this area. The pathlines consequently are of poor quality.

7.4 Quantitative Validation
For a quantitative evaluation of the pathline quality, we trace path-
lines along the imaged nuclei. In the ideal case, the pathlines would
move exactly along the nuclei positions. As mentioned before, perfect
ground truth is not available for the given data sets. The best approx-
imation that is accessible with acceptable costs are the approximated
cell positions from the optical flow. Hence, we rely on this data for
validation.

In each time step we calculate the distance between the pathline
position and the closest nuclei position derived from the optical flow.
This data can be used to colorcode the pathlines and provide the user
with an enhanced uncertainty visualization. Figure 11 gives examples
for the D. pseudoobscura and the D. melanogaster data sets. While
the pathlines of the D. pseudoobsura data set closely follow the ex-
tracted nuclei positions (mostly green color), the pathlines for the D.
melanogaster data set are colored in red in several areas indicating a
large error. Already by visual inspection of the pathlines biologists
can easily identify the implausible anterior-posterior motion of cells,
which should feature a dorso-ventral profile similar to the D. pseu-
doobscura data set. Backtracking the error in the pipeline, we found
that the errors stem from the optical flow computation. This example
illustrates the importance of a good error control especially in such
multi-step analysis pipelines.

To explore the error distribution over longer time-frames we added
a summary chart that provides the user with key numbers for the inte-
gration. Figure 12 shows the error chart for pathlines that were inte-
grated over 40 time steps in the D. pseudoobscura data set. The white
line gives the median error, which increases from zero (the pathlines
perfectly agree with the nuclei positions in time step 60) to roughly 6
units (voxel lengths) over the course of the tracking. The surrounding
gray area depicts the range between the first and third quartile. To pro-
vide reference, we also depict the half average distance between cells.
If this boundary is crossed, the cells are very likely no longer close to
their “real” cell, but closer to a neighboring one. The blue line gives
the average cell motion, which decreases from 4 to 3 units. Here we
see that the difference between cell motion and cell distance is not very
close, which underlines the request for an accurate tracking scheme.

7.5 Analysis of Integration Step Size
Using the quantitative error analysis of pathlines we can also automat-
ically investigate the influence of different integrators and step sizes on
the integration. Due to the coarse nature of the optical flow, we found
no significant differences between the Euler integrator and more ad-
vanced schemes such as Runge-Kutta-integration.

We also explored the influence of step sizes in the integration pro-
cess. Table 1 gives the errors for different settings. We see that the
error first decreases with decreasing step size. After reaching the op-
timum at ∆t = 1, the error slightly increases again. Again we account
this fact to the discretization initiated by the image resolution and the
respective optical flow which also can only achieve pixel accuracy.

Due to these observations, we currently use Euler integration with
fixed step size 1 and no interpolation between time steps.

7.6 LIC Results
Using the method described in section 7.3, we reconstructed the vec-
tor fields for three embryonic movie data sets. As detailed before, we
found in the data quality analysis that the reconstruction of the optical

(a) Drosophila pseudoobscura, time steps 70–74. Only front part.

(b) Drosophila melanogaster, time steps 100–104. Only front part.

0 δb
(c) Uncertainty-based color map from 0 to to “avg. inter-pt. dist.”.

Fig. 11: Quantitative analysis of pathlines: Pathlines are colored ac-
cording to their quality. Green color indicates good quality, red high-
lights likely errors in the data.

avg. motion

half cell dist

median dist

Fig. 12: Quantitative validation: Particles were started at t = 60 at nu-
clei positions and tracked over 40 time steps. The chart depicts the
three distance quartiles to the nearest measurement. Lines for the half
cell distance (orange) and average cell motion (blue) serve as refer-
ence.

flow field for one of the data sets is of poor quality and results in im-
plausible motions. The other two data sets passed the quality checks.

In joint work with the biologists we adapted the settings to give
most meaningful results. Here we controlled the length of the path-
lines and decided on camera settings for the final videos. For
each of these data sets we computed LIC videos from multiple
directions. One example is given in the supplementary material
(lic_pseudo1_t040-t087.mp4) displaying the development of the
D. pseudoobscura embryo from time step 40 to 87 using the LIC tech-
nique.

Figure 13 shows two snapshots of time steps 70 and 71. From the
color profile, we can directly observe that there is a strong velocity
gradient from anterior to posterior (left to right). While the cells in
the head area are barely moving, strong motions from the dorsal to
the ventral side (top to bottom) are visible in the central part. The
motions extend around the posterior pole and indicate germ band ex-
tension. Two prominent low-velocity areas are visible in the flow field,
the center of rotation (top right) and a saddle region on the dorsal side.
Looking at the pathlines, we readily recognize the surrounding motion



(a) Time step 70.

(b) Time step 71.

vmin vmax
(c) Velocity magnitude-based color map.

Fig. 13: Drosophila pseudoobscura, time steps 70 and 71. LIC visu-
alization snapshots.

for the 15 time steps that contributed to the image. The direct observa-
tion and spatial localization of these patterns was highly appreciated
by the biologists as these structures were known but so far hard to
visualize.

A second aspect, the biologists are very much interested in, is the
temporal development of the motion patterns. For this task we ren-
dered LIC movies from multiple sides. In these videos, it can be ob-
served that the symmetric vortex cores move as the germ band extends.
The visualizations also illustrate the difficulties that feature extraction
methods are going to face as topological structures are not singular
points, but consist of regions with little flow.

Overall the biologists were very impressed with the results. They
particularly liked the spatio-temporal consistency in the visualization
that makes structural analysis much easier. Another well received as-
pect of the new representation is the fact that emerging patterns can be
seen easily.

8 USER INTEGRATION AND FEEDBACK

The presented pipeline was developed in close collaboration with do-
main experts in biology (Lemke and Hufnagel lab from COS and
EMBL, Heidelberg). The collaboration started in 2010 with a gen-
eral request to be able to analyze video-microscopy data of morpho-
genetic processes. After having tested several standard approaches
based on segmentation and tracking, the team shifted to the novel di-
rection (integration-based reconstruction). Over the course of the col-
laboration, regular monthly meetings were supplemented by meetings
after significant progress regarding data analysis.

Progress in data visualization capabilities repeatedly led to refined
user questions by the biologists. Examples of this positive feed-
back loop are: (i) The initial plan to visualize fly development was
to render long-term trajectories using geometric approaches. This
approach proved to be little informative because global cell move-
ments were changing too much. As a consequence, biologists defined
more narrow time-windows that give meaningful results. (ii) We pro-
posed texture-based visualization that had not been used previously
and which helped the biologists rapidly pick up flow features in their
data and allowed them to postulate novel hypothesis that they are cur-

rently testing. (iii) With increasing visualization capabilities it became
apparent that robustness of data acquisition and analysis needed to be
controlled for in order to account for e.g. drift of the embryo during
imaging or artifacts introduced during large scale automated segmen-
tation.

9 CONCLUSION

In this paper, we presented a pipeline for the analysis of 3D+t em-
bryonic videos. The major challenges were the large data size (up
to terabytes per data set), the unconventional data structure, and high
error rates and uncertainty in the input data. We reconstructed the
motion field of cells using the optical flow in a 3D video. We inves-
tigated robust measurement extraction, spatio-temporal interpolation,
and pathline integration. We particularly concentrated on good data
evaluation methods to assess the quality of the resulting data. We fur-
ther advanced current LIC methods to be applicable in the given 3D+t
setting with a hollow body object.

Several improvements are possible for the different steps in the
pipeline. Interpolation of scattered point data is a well researched topic
with a long history. The application of more advanced schemes would
help to guarantee vector field properties such as higher-order continu-
ity. A crucial aspect is still the reconstruction of robust measurement
points. With our current scheme we already achieve very robust results
which might be further improved by a more dedicated analysis of the
super-voxels resulting from the optical flow.

On the visualization side, we want to further improve the visual
quality of the LIC as proposed in the related work. A very helpful but
challenging project is the automatic extraction of flow features, such
as vortex cores and saddle points, in this uncertain data.
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