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Abstract.  Mechanical oscillations are important for many cellular processes,
e.g. the beating of cilia and flagella or the sensation of sound by hair cells. These
dynamic states originate from spontaneous oscillations of molecular motors.
A particularly clear example of such oscillations has been observed in muscle
fibers under non-physiological conditions. In that case, motor oscillations lead
to contraction waves along the fiber. By a macroscopic analysis of muscle fiber
dynamics we find that the spontaneous waves involve non-hydrodynamic modes.
A simple microscopic model of sarcomere dynamics highlights mechanical
aspects of the motor dynamics and fits with the experimental observations.
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1. Introduction

Oscillations are a common phenomenon in biological systems. Even on a cellular level
oscillatory dynamics is widespreadl] [ Examples are provided by circadian rhythms through
which cells anticipate the changes of day and nightdy the Min-oscillations in the bacterium
Escherichia colithat help to select the cell center as the division sHk Ipy hair bundle
oscillations in auditory hair cells], and by the beating patterns of cilia and flagella that are
crucial for the transport of mucus and propel microorganisshs [

The latter are examples of mechanical oscillations that involve molecular méjefg][

These proteins are able to transform chemical energy into mechanical work. The chemical
energy is provided by the hydrolysis of adenosine-tri-phosphate (ATP) which results in
adenosine-di-phosphate (ADP) and inorganic phosphateMetor proteins can catalyze this
reaction and concomitantly undergo conformational changes. By this motion they can translate
directionally along polar protein filaments and transport cargos or generate forces. Examples
are myosin motors that interact with actin filaments and kinesins or dyneins that interact
with microtubules. The polarity of actin filaments and microtubules results from structural
differences between the two ends of a filament and a microtubule and determines the direction
of motion of a motor.

On theoretical grounds it had been suggested that ensembles of molecular motors
connected to elastic elements can generate spontaneous oscillations through a Hopf-
bifurcation [B]. It has been proposed that such mechanical oscillations are at the origin of
flagellar and ciliary beats9]-[11] and of mitotic spindle oscillations during asymmetric cell
divisions [L2]. Striking evidence of spontaneous oscillations caused by molecular motors is
provided by oscillations of muscle fibers that have been studied in the past 20 years by
Ishiwata and coworkers1B]-[20]. Muscle fibers are chains of sarcomeres, the elementary
force generating units of skeletal and cardiac musB]edee figurel for an illustration. In
a sarcomere, actin filaments and filaments consisting of many myosin motor molecules are
arranged in such a way that activation of the motors leads to contraction of the structure. Its
integrity is maintained by passive elastic elements.

Spontaneous sarcomere oscillations are observed under constant, but non-physiological
chemical conditions][3]. Remarkably, the oscillations exists even in reconstituted muscle fibers
that contain only essential structural elements like actin, myosin and scaffolding proteins, but
no regulatory elementslf]. Depending on the external conditions and applied forces, the
oscillations of sarcomeres in a muscle fiber can be either synchronous or asynchiahagks [

Under appropriate conditions, contraction waves traveling along the muscle fiber can be
observed]3, 14, 20Q].

Theoretical work on this system has so far focused on synchronization effects of chains of
coupled Hopf-oscillators1]. In that analysis, synchronization effects due to a global coupling
of oscillatory elements through a mass have been studied. In particular, a rich phase diagram
of synchronous and asynchronous states was found. In another study, gradients in sarcomere
properties were suggested to cause synchronization between adjacent sarcomeres which
ultimately yields coherent contraction wav@g]. The existence of such a gradient is currently
not supported by experiments. A comprehensive theoretical account of the experiments by
Ishiwataet alis currently not available.

We present in this work, a study of the dynamics of muscle fibers using two complementary
approaches. Phenomenological descriptions of active polar gels provide a general framework for
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Figure 1. lllustrations of a muscle sarcomere. Attached with their plus ends to
the Z-discs, actin filaments are depicted in red. Interdigitating with the actin
filaments are bipolar myosin-Il filaments. The motor heads can bind to the actin
filament. Upon activation they move towards the actin filaments’ plus ends and
contract the structure. The central structural element is the M-line. Together with
the titin molecules, which are represented as springs that go through the hollow
myosin filaments, the Z-discs, and still other passive elements, they provide
structural integrity to sarcomeres.

studying the dynamics of motor filament syste®@34[26] and have been successfully applied,

for example, to describe essential features of the lamellipodia of crawling 2&]lsVi/e will

start, therefore, in the next section by developing a hydrodynamic theory of muscle fibers. As
will be shown, this description fails to yield oscillatory solutions. In the subsequent section, we
will consider a microscopic model of muscle sarcomeres in which spontaneous oscillations are
a consequence of load dependent detachment rates of motors from filaments. The corresponding
model of a chain of sarcomeres is then shown to wholly reproduce the phenomenology of waves
along muscle fibers. In the discussion, we compare the results of our theoretical analysis to
experimental observations.

2. Hydrodynamic description of muscle fibers

Hydrodynamics is a systematic approach to assess dynamic phenomena of spatially extended
systems in the limit of large wavelengths and long time scales. Hydrodynamics assumes
furthermore that these systems are in the regime of linear response. Formally, a hydrodynamic
mode of wave-lengtly relaxes with a characteristic time~ g=2. In this limit, it is appropriate

to make the assumption of local thermodynamic equilibri@@.[In general, the system is
subdivided into volumes that are small compared to the large-scale structures of interest and
that are, at the same time, large enough to allow for a thermodynamic (equilibrium) description.
Based on this assumption, a free energy can be defined for the full system which is out of
equilibrium. The change with time of the free energy can be expressed as a sum of products of
generalized forces and fluxes. Then, the fluxes are expressed in terms of the forces, where only
terms of linear order are considered. The resulting description is purely phenomenological and
only depends on the modes under consideration as well as the symmetries of the system.

We will apply this approach to muscle fibers, which will be considered as one-dimensional
one-component complex fluids. First, we have to identify the hydrodynamic modes of
the systems. In general, they are associated with conservation laws or broken continuous
symmetries. The muscle fiber is an essentially one-dimensional system with the order of the
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actin and myosin filaments being fixed. Consequently the system does not offer any broken
continuous symmetry. There are three conserved quantities: the fiber mass, momentum and
energy. In experiments, the fluid surrounding the fiber essentially provides a heat bath such that
temperature is constant and energy conservation is not an issue. Note, that this no longer holds
for muscle, which heat up when active. Conservation of mass and momentum implies

dkp+V-pv=0, (1)
wherep is the mass density along the fiber ans local velocity, and
Opv—V -0 = foy. (2)

In this expression, the stressgives the momentum flux densityo and fey IS an externally
applied force. For the dynamic phenomena we consider, inertia is irrelevant, such that
equation ) reduces to a force-balance relation between internal stresses and external forces.

Under the assumption of local thermodynamic equilibrium, changes in the system'’s free
energy can be expressed as

d

aF:—v/‘(oaxvﬂ’A,uv)dx. 3)

It can thus be written as a sum of products, where in each product, a generalized flux is
multiplied with its conjugate generalized force. In the present case, the fluxes are taken to
be the stresg and the rate of ATP-hydrolysis. The force conjugate te is the rate of
straindyv, the force conjugate to is the differenceA in chemical potentials of ATP and its
hydrolysis products ADP and P\« = uate — (app + p). Note that since the density changes

by relative sliding of actin filaments and motor filaments, we assume that the system is infinitely
compressible. Consequently, the pressure vanishes.

In the next step, the generalized fluxes are expanded in terms of the generalized forces up
to linear order. To this end the fluxes have to be separated into their reactive and their dissipative
components. The dissipative component of a flux has the same sign with respect to time-reversal
as its conjugate flux, the reactive component has the opposite sign. The corresponding changes
in the free energy are thus, respectively, irreversible and reversible with respect to time-reversal.
The respective components of a flux can be expanded only in terms of forces with the same
behavior under time-reversal. With=c"+0% andr =r"+r9, where the superscripts r and d
discriminate between the reactive and the dissipative parts, respectively, we get

r' = —c¢oyv, (4)
rf=AApu, (5)
o' =¢Apu, (6)
o9 =&dw. (7)

The phenomenological coefficiehtaccounts for the effects of an internal friction in the muscle
fiber, while A determines the rate of ATP-hydrolysis given a difference in chemical potentials
A . The coefficient is a measure of the contribution to the stress by active processes, i.e. the
action of motors. The coefficients in front of the cross-terms must be equal up to a sign due to
the Onsager relations.

Equations 4)—(7) provide the constitutive equations for an active fluid and thus take no
account of the passive elastic response of a muscle fiber. Such a response, however, is expected
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in a passive fiberAu = 0, due to the elastic elements of sarcomeres which help to maintain
structural integrity. Consequently, on large time scales, one expects an elastic response also in
the active case. The short time behavior in the passive case is somewhat more subtle. The motor
molecules constantly detach from actin filaments and rebind. This dynamics leads to a viscous
response of the syster?9, 30]. Therefore, the passive system shows visco-elastic behavior.
Note that on very short time scales, bound motors will lead to an additional elastic response.
We will neglect this contribution and consider only one relaxation time. In contrast to theories
of active polar gels34, 25], we thus have viscous behavior on short and elastic behavior on
long time scales. We will model this behavior of the passive system by the Kelvin—\oigt model

of a linear spring and a dashpot acting in parallel, such that the elastic and the viscous stresses
simply add. The elastic part is given by' = Ep/po, Wherepg is the equilibrium density and

E the elastic modulus. The elastic part must be added to the reactive component of the stress in
equation 6).

For the analysis of the dynamic equatiod$—(7), we take a dependence of the active
stress on the densify into account. As the overlap between the actin filaments and the motor
filaments increase, the active stress changes for consianiVe therefore expanglin terms of
o, While keeping only terms up to first ordeér= ¢ + ¢10. In the case that the only external force
results from friction with the surrounding fluid, we writg fex = —nedi 0/ 00, Wherene is the
corresponding friction coefficient. Combining this expression with the dynamic equations for
the time evolution of deviations from the equilibrium distributiomyg is determined up to linear
order by

(E+po A1) 070 — & 307 p = ne dyp. (8)

If E+poAuney < 0, aperturbation of the equilibrium state will thus grow leading to a contracted
state. The condition states essentially that the active stresses must be larger than the passive
elastic stresses. Note, however, that the dynamic equation for the fiber density does not allow
for wave solutions.

3. Microscopic model of muscle fibers

As we have seen in the previous section, the oscillation mechanism of muscle fibers involves
non-hydrodynamic modes. In this section, we will propose a microscopic model of the dynamics
of muscle fibers. Firstly, we present the dynamics of a half-sarcomere and show that it is able to
oscillate spontaneously. We then study the dynamics of a chain of such elements and compare
it to the experimental observations of muscle fibers. Finally, we obtain the continuum limit of
the chain and compare it to the description developed in the previous section.

3.1. The half-sarcomere

Muscle fibers are periodic structures. The elementary units are sarcomeres as illustrated in
figure 1. A sarcomere consists of filaments of myosin-Il motors and actin filaments with their
plus-ends pointing outwards. By activation of the motors, the structure contracts. In addition to
the active acto-myosin system, there are passive elastic elements affecting the dynamics of a sar-
comere. Elasticity results from structural elements like the Z-disc, to which actin filaments are
attached with their plus-ends, or from titin, a molecule extending through the whole length of a
sarcomere and preventing it from falling apart upon stretching. From a dynamic point of view,
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Figure 2. Schematic representation of the half-sarcomere model. Motors are
linked to a common backbone by springs of stiffnkssd extensiory. Motors
bound to the polar flament advance at veloaitythe corresponding binding
and unbinding rates are, and w,, respectively. The elasticity provided by
structural elements of a half-sarcomere is lumped into a spring with stiffaess
The extension of the elementxs

the two halves of a sarcomere are identical, such that half-sarcomeres can be considered as
the elementary units of a muscle fiber. We are now going to specify the dynamics of this
structure.

3.1.1. The dynamic equationsWe approximate a half-sarcomere by the structure illustrated in
figure 2. It consists of motors moving along a polar flament and a linear spring of stifikess
The motors are attached to a common backbone by springs of stikreexs extensiory. The
motor filament as well as the polar filament are effective structures that result from averaging
the parallel filaments in a sarcomere in the direction perpendicular to the sarcomere extension.
The whole structure is immersed in a fluid of viscosjty

A motor in the overlap region of the motor filament and the polar filament stochastically
binds to and unbinds from the polar filament with raégsand @, respectively. The binding
and unbinding rates depend in general on the force applied to the motor. We assume that the
force dependence is restricted to the unbinding rate. Motivated by Kramers’ rate theory we
write oy = w) exp{| f |a/ ks T}, wherea is a microscopic length scale. The effective binding and
unbinding rates used here can be related to the binding and unbinding rates of individual motor
molecules. If there ar® motors in a sarcomere cross-section, then the effective binding and
unbinding rates are, respectivedy, = M @y andwy, = M @y, /[(@p/dy+ DM — 1] [31]. Typical
values for a sarcomere are presented in the appendix.

Motors bound to the filament move directionally on the polar filament such that the half-
sarcomere contracts. For simplicity, we assume a linear force—velocity reldtion= v (1 —
f/fo). Here, f =k y is the force acting on a motoff, is the stall force at which the motor
stops walking andy is the velocity of an unloaded motor. Implicitly, the linear force—velocity
relation assumes processive motors, whose mean path bound to a filament noticeably exceeds
the step size of a single motor. While individual myosin-Il molecules are non-processive, the
ensemble of motors in a cross-section can be described by an effective motor that is processive,
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see appendix. Unbound motors diffuse in the potential provided by the spring which connects
them to the backbone. In the following, we will refer to effective motors as motors.

The derivation of the dynamic equations for the half-sarcomere length follows closely the
procedure introduced irlP], where mitotic spindle oscillations are studied. The elastic force is
given by fo = K(x — Lg), whereL is its rest length and is the length of the element. Lgf
denote the extension of the spring linking monato the backbone. The total motor force then
is fn= kzr'?':l on Yn . Here,N is the number of motors ang, = 1 if motor n is bound and 0
otherwise. The extensioy, changes according to

Yn = vn +X, 9)
wherev, is the velocity of moton on the filament and describes changes of the length of the
half-sarcomere element.

In the following, we will use a mean-field approximation, which consists of assuming
that all motors in the half-sarcomere have the same spring extengieny for all n. The
mean position is determined through= y/w,. The fraction of bound motors is denoted

by Q. Assuming fast relaxation of unbound motors, their distribution equals the equilibrium
distribution and the time evolution @ can be shown to obey P]

Q=wp— (wp+wy) Q, (10)

while the total motor force is given by, = N(x) Q ky. Here,N(x) = (4; + £, — X)/A is the
number of motors in the overlap region of the filament and the motor backbone of lgnagths
and{,, respectively, whileA is the distance between adjacent motors.

The elastic forces as well as the active forces generated by motors are balanced by friction
and possibly by an external force:

fe+ fm = ff + fext. (11)

The Reynolds numbers associated with flows generated by shortening of the half-sarcomere is
low, such that inertial effects can be neglected. Accordingly, for the friction féreee write

fi = —&X, where¢ is an effective friction coefficient which depends on the viscositf the
surrounding medium. Note that there is also a contribution of the motors to fri@@ra(],

see appendix. This completes the specification of the dynamics of the model half-sarcomere.

3.1.2. The phase diagramThe dynamic equations allow for a stationary stétg Qo, Yo),

where the active force of the motors is balanced by the elastic forces. Note that for too strong

motors, that is, iy Or @y, are too large, this state is unphysical as the structure shortens to values

below the length of the actin or the motor filamext,< max{¢y, 45}. A linear stability analysis

of the stationary state yieldg w/(Yo) > wp + wy(Yo) @s a necessary condition for an instability.

This implies that the force dependence of the motor binding kinetics is essential for oscillations.

A second necessary condition for an oscillatory instabilit@isk yo < KA. This means that

the force generated in the stationary state by an additional motor in the overlap region of the

polar and the motor filament is smaller than the corresponding change in the elastic force.
Figure3 presents the regions of stability of the stationary state for different cuts through the

parameter space. In figuBga), the strength of the external force and of the elastic eletdent

are varied. For sufficiently small external forces and stiffrtesghe motors maximally shorten

the element. As the stiffness is increased, the system starts to oscillate spontaneously. Upon a

further increase, an inverse Hopf-bifurcation occurs and the stationary state is stable. Eventually,
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Figure 3. Phase diagram of a half-sarcomere. (a) Dynamic states as a function of
the external forcde, and the stiffnes& . Regions of a stable stationary state are
white. In the dark gray region, the system oscillates spontaneously. In the light
gray region, the stationary state is unphysical, implying that the element either
fully contracts or over-stretches. (b) Dynamic states as a function of the effective
friction coefficient and the binding rate of individual motors. In (a) and (b) all
other parameters are as in the appendix.

in the limit of largeK, the system will be forced to assume a length close to the rest léggth

If instead the external forcde,; is increased, a region of stable physical stationary states is
reached. Beyond a critical value of the external force, though, the system is over-stretched and
behaves as a simple elastic element with stiffiess the motors cannot interact with the polar
filament. Note that since the elastic elements of a real sarcomere are non-linear, a chiggge in
will also affect the value oK that we use in the model.

In figure 3(b), we present the phase diagram resulting from changes in the motor activity
and in the viscosity of the surrounding fluid. The latter influences the value of the effective
friction constanté. Changes in the motor activity affect several parameters. An important
parameter is the binding ratg, of individual motors. The diagram shows that a decrease of
the effective friction constant can induce oscillatory behavior. For sufficiently low valugs of
an increase aby, can first lead to an instability of the stationary state, while for too large values
it is stable. This is reminiscent of the behavior predicted for spindle oscillations by a similar
model [L2], and for which there is experimental eviden8€][ Note that due to the mechanism
studied in P9, 30], changes inv, also affect the value df.

An example of an oscillation of a half-sarcomere is shown in figi{eg. It shows the
characteristic saw-tooth shape which is observed experimentally, a slow contraction of the
element is followed by a rapid expansion. As the motors shorten the element, the elastic force
increases and therefore the force on the motors increases. This in turn increases the unbinding
rate of motors. As a few motors detach from the filament, the remaining motors experience an
even higher force, such that an avalanche of motor unbinding events occurs. The elastic element
stretches the linker again and the motors rebind, the cycle can repeat.

3.2. A chain of half-sarcomeres

We now consider a chain of half-sarcomeres as studied in the previous section. It will be shown
that the strong coupling between half-sarcomeres in a chain leads to traveling wave solutions
that share essential features with waves observed experimentally in muscle fibers.
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Figure 4. Sarcomere oscillations. (a) Oscillations in the extensiaf a half-
sarcomere as a function of time generated by equat®r£l(1). (b) Oscillations

in the extensiorx; +x, of two coupled half-sarcomeres as a function of time.

In (a) and (b) the parameters in the appendix have been used. (c) Averaged
oscillations of one sarcomere of skeletal muscle. Adapted fram. [The
numerical solutions shown in (b) and the experimental oscillations in (c) have
the same temporal period and similar amplitudes. In all cases the functional form
indicates a phase of relatively slow contraction followed by a fast extension.

Consider a chain ofS half-sarcomeres, where the right end of a half-sarcomere is
simultaneously the left end of the subsequent element. The right end of half-sardomere
the chain is at positiog;, the left end of the first-sarcomere is fixedzgt= 0. Force balance of
the half-sarcomere ends yields:

ff1= (fe,l"‘ fm,l) - (fe,z + fm,z) ) (12)

fri=2(fej+ fmj) = (feja+ fmj1) = (fejrr+ fmjue) (13)

fs=2 ( fes+ fm,S) — (fe,Sfl + fm,&l) + fext, (14)
with j =2,..., S—1. Here, f; ; = —£X;, wherex; =z; —z;_;andj =1, ..., S, denotes the

friction force in thejth half-sarcomere. The forcefg ; and f,, j are, respectively, the elastic
and the motor force of half-sarcomejreThe expressions fof, ; and f,, ; are identical to those
of an individual half-sarcomere. The dynamic equations for the exterygiamd the fraction
Q; of bound motors in half-sarcomeyjeare obtained from equation8)(@nd (L0), respectively,
wherex, y andQ are replaced by;, y; andQ);.

For the parameters given in the appendix, a chainSef 2 half-sarcomeres, i.e. a
sarcomere, the asymptotic dynamic state is presented in fifbjeand compares nicely to
experimental observationsT], see figured(c). While a half-sarcomere essentially only shows
two states, one stationary and one oscillatory, the dynamics of a sarcomere is richer. Oscillations
of different symmetry classes can be identified as is reporte@3hvhere hydrodynamic
interactions between half-sarcomeres have been included. A detailed study of the bifurcation
diagram of a sarcomere will be presented elsewhere.

In figure 5, a spontaneous wave along a chain of 20 half-sarcomeres is presented for the
parameter values given in the appendix and compared to an experimentally observed wave in
a cardiac muscle fiber2[)]. In both cases, a relaxation wave travels from left to right. The
temporal period of individual sarcomeres is similar in the simulation and the experiment, the
corresponding oscillation amplitude is somewhat larger in the theory. The relative phase shift
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Figure 5. Spontaneous travelling waves. (a) Wave along a chaiis ef20
half-sarcomeres as described in sectlbbR The extensions of the six central
sarcomeres are depicted successively on top of each other, with the left-most
being on top. The dashed arrows connect the positions of the maximally
contracted state in adjacent sarcomeres. Parameters are as in the appendix.
(b) Wave observed in a cardiac muscle fiber. Modified fr@gj.

between the oscillations in adjacent sarcomeres differs by less than 10% between theory and
experiment.

Note that experimentally, cases are also observed where the relaxation wave starts at the
right of the fiber rather than at the left, leading to a wave traveling from right to left. In still
other cases, the wave is initiated at some point along the fiber, traveling to the right and to the
left starting from that point. The same is observed in numerical solutions of a chain of half-
sarcomeres: depending on the initial conditions the wave can start anywhere along the chain.
In addition to regular waves, for other parameter values we also find states where individual
sarcomeres oscillate, but no coherent relaxation wave is formed.

3.3. The continuum limit

In order to get further insight into the spontaneous waves and to compare the model presented
in this section with the phenomenological approach presented in s&;twa now study the
continuum limit of an infinite chain. It will be shown that in this limit and neglecting the binding
dynamics of the motors, the hydrodynamic description is obtained.

In the continuum limit, we will neglect all nonlinear terms. Thus we first linearize
equations 9), (10) and (3) with respect to the stationary state,(Qo, Yo). In the linearized
equation {3), we then approximate the differences— zj_, >~ Xo9,X, wherez is now the
coordinate along the chain. The gradientsxirare just the strain in the chain and can be
linked to the densityp(z) along the chain. Consider a piece of lendthof the chain. On
one hand, changing the density from its stationary valgi¢o p changes the mass in this
piece asf, (oo — p) dz. On the other hand, the change in density can be linked to a change
in the distance between the particles (the end-points of the half-sarcomeres) according to
polX(zL) — X(20)] = po f, 3,xdz, wherez, andz, are the end points of the piece. Since the
piece was arbitrarily chosen, we fidgk = 1 — p/ po.
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Eliminating the equation foy, we then arrive at

0 p = [C1+C20] 97p — 307 Q, (15)
0t Q = C40¢p — C5Q. (16)
Here, the constants are related to the microscopic parameters via
¢ =[K —kQoyo/AlXS, 17)
C2 = kN(X0) QoXg/[@/,(Yo) Yo + @y (Yo) + Ko/ fo], (18)
C3 = poXoN (Xo)KYo, (29)
Cs = Qow,, (Yo)Xo/[po(@, (Yo) Yo + @y (Yo) +Kvo/ o)]. (20)
Cs = wp + wy(Yo)- (21)

In the case of a stationary fractidp of bound motors, equatiorif) has the same form as the
hydrodynamic equation of motioB) and relationsX7) and (L8) relate the phenomenological
parameters to microscopic parameters. We again find that the dynamics of the fi@ation
bound motors, which clearly is not a hydrodynamic mode, is essential for obtaining waves
along the chain of half-sarcomeres. A linear stability of the homogenous stationary state of
equations 15) and (16) yields the same necessary condition as above for oscillatory solutions,
Qokyo < KA as found above.

4. Discussion

In the preceding sections, we have presented theoretical descriptions of the dynamics of muscle
fibers. Using a hydrodynamic approach where the system is described as a one-dimensional
complex fluid close to thermodynamic equilibrium, we obtained a lower bound on the system’s
activity to obtain contraction. Based upon a microscopic model of half-sarcomeres, we found
oscillatory states that correspond to traveling waves along the fiber. The essential ingredient
underlying this dynamic behavior is contained in a force dependence of the binding—unbinding
kinetics of myosin motors to actin filaments. Spontaneous oscillations of sarcomeres and
contraction waves along muscle fibers are observed experimentally and have been studied
intensively [L3]-[20]. In the following paragraphs, we will compare experimental findings to

our theoretical results.

First of all, sarcomeres have been observed to spontaneously oscillate under constant non-
physiological conditions13]. They consist of a slow contraction and a fast expansion phase,
leading to a saw-tooth pattern of the sarcomere extension versus time curve. It was shown
experimentally that the oscillations are not induced by resonances with an external load, leading
to the conjecture that spontaneous oscillations should be possible also in the absence of an
external load 19]. Our (half-)sarcomere model generates behavior that is certainly consistent
with these results and conclusions.

By choosing parameter values that are compatible with the values known from muscle and
muscle myosin, the oscillatory solutions we find match the experimental observations semi-
guantitatively. Parameters could always be fitted such that the experimentally observed period
and amplitude of the oscillations match exactly. Note, however, that these differ for different

New Journal of Physics 9 (2007) 417 (http://www.njp.org/)


http://www.njp.org/

12 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

kinds of muscle. We therefore chose one typical set of parameters as explained in the appendix
without aiming at quantitatively matching a particular experiment.

Parameter values have been systematically varied in experiments. Unfortunately, variations
in the chemical composition of the buffer solution are not readily translated into changes of
the parameter values we employ in our model. This holds in particular for the activity of the
motors. In the buffers studied experimentally, motors are always only partially activated. The
degree of the activation, however, is not assessed directly. Still, a few comparisons can be made.
First of all, the oscillation frequency does not depend on the applied external fioficd he
same holds for the critical frequency at the onset of the oscillatory instability in the model.
Furthermore, it has been shown that the oscillatory regime is an intermediate state between
relaxation and contractiori B, 15] that can be continuously connected by changing the degree
of motor activity [L8]. Changes in the degree of motor activity can in our model for example be
described by increasing the binding raigof motors to the polar filament. In that case, we also
observe a transition from a relaxed state to an oscillatory state and then a maximally contracted
state, see figurg(b).

Experimentally, spontaneous oscillations are observed only if a moderate external force
is applied [L4]. At first sight, this might be incompatible with the phase diagram presented in
figure 3(a). Indeed, if only the external force is varied, then the system can at best be driven
from an oscillating state to a non-oscillating one. However, one has to keep in mind that we
have made the assumption of linear elastic elements. In a sarcomere, though, the elasticity
is non-linear. While for the oscillations it is not essential to keep the non-linearity, it implies
that with the application of external forces also the value of the effective stifidesisanges
(it might either increase or decrease). By describing a curvilinear path infthel(-plane
when changind e, the experimental observation and the theoretical results can be compatible.
Furthermore, changes in the external force might affect other model parameters, for example,
through the mechanism of stretch activation.

As already mentioned in the previous section, all the kinds of traveling waves observed in
experiments have their counter-part in solutions to the chain equations. In particular, the prop-
agation speed in terms of relative phase shifts between adjacent sarcomeres compares nicely.

In our analysis, we have neglected the effects of noise in our system. It has been shown
in[12], where a similar approach was followed to describe oscillations of mitotic spindles during
asymmetric cell division, that the mean-field analysis faithfully reproduced the features of the
stochastic system. The same can be expected to hold in the present case.

In summary, we have presented a first semi-quantitative analysis of spontaneous
oscillations of muscle fibers. It will now be interesting to design experiments that could
specifically change parameters of the model and thereby test the importance of a force-
dependent binding-unbinding kinetics of molecular motors for the observed oscillations. Due
to the wide-spread appearance of motor oscillations, a quantitative combined experimental and
theoretical study will likely help us to understand various cellular processes.

Appendix. Parameters

In this appendix, we discuss the parameter values that we have used in our numerical solutions of
the dynamic equations presented in secBdnl As the parameter values differ for the various
kinds of muscle used in experiments, we will present here typical values rather than trying to
argue why a specific value has to be chosen for describing a particular experiment.
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Let us start with geometric considerations. A typical rest length of an inactive sarcomere
is 25um [7], so we take 2o =2.5um, whereL, is the rest length of the elastic element
of a half-sarcomere. Typical lengths of actin filaments @re 0.6 um and{,, = 1.5m for
myosin filaments, the latter consisting of about 300 myosin-1l molec@le£prrespondingly,
the average distance between two adjacent motors on a myosin filamest snm.

In a muscle fiber, the approximately 1000 myosin filaments are arranged in a hexagonal
lattice interdigitating with a hexagonal lattice of actin filaments. In a slice of thickr@ess
perpendicular to the orientation of the filaments, however, only a fraction of the motors can
actually bind to an actin filament. This is because myosin binding sites are evenly spread on
an actin filament every 37 nm. Assuming that a motor head can bind within 4 nm around its
equilibrium position with respect to the motor filament, we arrive at about 100 motors that
actually can bind in a slice of thicknegs

As mentioned in sectiof.1.1, an ensemble oM = 100 non-processive myosin-Il can be
considered as one effectively processive motor. The time an individual motor spends bound to an
actin filament is about 5 m$[. As in the experiments motors are only partially activatéd [

18], we choose heré, = 1/w? = 30 ms. The binding rate can then be inferred from the duty
ratior, which gives the fraction of time a motor is attached to a filament during a whole cycle.
We choose = 0.09 which is in the middle of the predicted rang§.[From the values of
individual motors, the parameters characterizing the effective motor can be infadjeé¢r

the effective motor, we furthermore choose a stall fofge= 4 pN and a load-free velocity
vo=0.4umst. These values are lower than what might be obtained from single molecule
experiments and again account for the only partial activation of motors in the experiments.

The elastic components entering our model are experimentally hard to assess. Single
molecule experiments with myosin-ll suggest a stiffness of the linker of the head to the
motor filament of the order df =4 pNnnt? [6, 34]. We are not aware of measurements of
K. Contributions come from titin molecule84] the Z-discs and other elements. We choose
K = 0.5pN nntL. Similarly, the microscopic length scadés unknown. It must be of molecular
dimensions and we chooae= 3 nm. Experiments are carried out at room temperature, such that
ks T =4 pNnm.

Finally, friction in muscle fibers results from protein to protein friction as well as from
hydrodynamic friction. Their effects are lumped into the paramgt&ssuming a viscosity of
ten times the viscosity of watef,.er~ 103 Pas, we use for the effective friction coefficient
£ =10pNsum.
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